1
|
Wu J, Nan X, Zhang X, Xu W, Ma H, Yang Z, Wang C. The Identification and Analysis of the Self-Incompatibility Pollen Determinant Factor SLF in Lycium barbarum. PLANTS (BASEL, SWITZERLAND) 2024; 13:959. [PMID: 38611487 PMCID: PMC11013074 DOI: 10.3390/plants13070959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/07/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Self-incompatibility is a widespread genetic mechanism found in flowering plants. It plays a crucial role in preventing inbreeding and promoting outcrossing. The genes that control self-incompatibility in plants are typically determined by the S-locus female determinant factor and the S-locus male determinant factor. In the Solanaceae family, the male determinant factor is often the SLF gene. In this research, we cloned and analyzed 13 S2-LbSLF genes from the L. barbarum genome, which are located on chromosome 2 and close to the physical location of the S-locus female determinant factor S-RNase, covering a region of approximately 90.4 Mb. The amino acid sequence identity of the 13 S2-LbSLFs is 58.46%, and they all possess relatively conserved motifs and typical F-box domains, without introns. A co-linearity analysis revealed that there are no tandemly repeated genes in the S2-LbSLF genes, and that there are two pairs of co-linear genes between S2-LbSLF and the tomato, which also belongs to the Solanaceae family. A phylogenetic analysis indicates that the S2-LbSLF members can be divided into six groups, and it was found that the 13 S2-LbSLFs are clustered with the SLF genes of tobacco and Petunia inflata to varying degrees, potentially serving as pollen determinant factors regulating self-incompatibility in L. barbarum. The results for the gene expression patterns suggest that S2-LbSLF is only expressed in pollen tissue. The results of the yeast two-hybrid assay showed that the C-terminal region of S2-LbSLFs lacking the F-box domain can interact with S-RNase. This study provides theoretical data for further investigation into the functions of S2-LbSLF members, particularly for the identification of pollen determinant factors regulating self-incompatibility in L. barbarum.
Collapse
Affiliation(s)
- Jiali Wu
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Xiongxiong Nan
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan 750004, China
| | - Xin Zhang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- Innovation Team for Genetic Improvement of Economic Forests, North Minzu University, Yinchuan 750021, China
| | - Wendi Xu
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- Innovation Team for Genetic Improvement of Economic Forests, North Minzu University, Yinchuan 750021, China
| | - Haijun Ma
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- Ningxia Grape and Wine Innovation Center, North Minzu University, Yinchuan 750021, China
| | - Zijun Yang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Cuiping Wang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- Innovation Team for Genetic Improvement of Economic Forests, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
2
|
Roychowdhury A, Srivastava R, Akash, Shukla G, Zehirov G, Mishev K, Kumar R. Metabolic footprints in phosphate-starved plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:755-767. [PMID: 37363416 PMCID: PMC10284745 DOI: 10.1007/s12298-023-01319-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
Plants' requirement of Phosphorus (P) as an essential macronutrient is obligatory for their normal growth and metabolism. Besides restricting plants' primary growth, P depletion affects both primary and secondary metabolism and leads to altered levels of sugars, metabolites, amino acids, and other secondary compounds. Such metabolic shifts help plants optimize their metabolism and growth under P limited conditions. Under P deprivation, both sugar levels and their mobilization change that influences the expression of Pi starvation-inducible genes. Increased sugar repartitioning from shoot to root help root growth and organic acids secretion that in turn promotes phosphate (Pi) uptake from the soil. Other metabolic changes such as lipid remodeling or P reallocation from older to younger leaves release the P from its bound forms in the cell. In this review, we summarize the metabolic footprinting of Pi-starved plants with respect to the benefits offered by such metabolic changes to intracellular Pi homeostasis.
Collapse
Affiliation(s)
- Abhishek Roychowdhury
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Rajat Srivastava
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Akash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Gyanesh Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| | - Grigor Zehirov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kiril Mishev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046 India
| |
Collapse
|
3
|
Liu J, Cobertera DC, Zemetra RS, Mundt CC. Identification of Quantitative Trait Loci for Resistance to Wheat Sharp Eyespot in the Einstein × Tubbs Recombinant Inbred Line Population. PLANT DISEASE 2023; 107:820-825. [PMID: 35961017 DOI: 10.1094/pdis-05-22-1044-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wheat sharp eyespot (SES), caused by the soilborne pathogen Rhizoctonia cerealis Van der Hoeven (teleomorph: Ceratobasidium cereale), is a common stem disease of wheat globally. The disease caused a severe and extensive epidemic throughout the Willamette Valley of Oregon in 2014 and has remained one of the most important wheat diseases in this region. However, little was known about the genetics of host resistance to this disease. A recombinant inbred line (RIL) population with 257 lines developed from a cross of Einstein × Tubbs was used to study SES resistance of wheat. The phenotyping was conducted at two locations and in 3 years. Genotyping by sequencing was done by using Illumina HiSeq 3000. Low broad-sense heritability across four environments was obtained. The results of analysis of variance demonstrated that disease severity was significantly different among RILs for the data combined over environments and for one of the individual environments. Four SES resistance quantitative trait loci (QTL) were detected, including QSES-1A, QSES-2B, QSES-6A, and QSES-7A, and explained 5.9, 5.9, 8.8, and 8.3%, respectively, of the phenotypic variance. All four QTL overlapped or are in close proximity with one or more plant defense genes, and could lay the foundation for marker-assisted breeding.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902
| | - David C Cobertera
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331-2821
| | - Robert S Zemetra
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331-2821
| | - Christopher C Mundt
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902
| |
Collapse
|
4
|
Shi J, Wang Y, Li Z, Huang X, Shen T, Zou X. Characterization of invisible symptoms caused by early phosphorus deficiency in cucumber plants using near-infrared hyperspectral imaging technology. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120540. [PMID: 34753704 DOI: 10.1016/j.saa.2021.120540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
In the early stage of P deficiency in cucumbers, the P deficiency symptoms in leaves are similar to the symptoms in control leaves at the early stage of aging and are difficult to identify with naked eyes or computer image processing techniques. In order to realize the quick diagnosis of P deficiency in plants at the early stage, the NIR hyperspectral images of control leaves and P-deficient leaves were collected, and the feature information of the NIR hyperspectral images was extracted by PCA and ICA respectively. Through PCA and HCA verification, the IC1 component diagram of P-deficient leaves NIR hyperspectral image could effectively characterize the features of invisible water-stained plaques caused by early P-deficient leaves. Region of interest from IC1 was selected to extract spectral information for classification, and the diagnostic rate was remarkably improved. Finally, 240 leaves were diagnosed by using the BP-ANN model with a diagnostic rate of 97.5%. In addition, the experiment verified that it was possible to diagnose whether the plant was in the state of P deficiency 21 days in advance, and timely guidance of top dressing was of great significance to increase yield.
Collapse
Affiliation(s)
- Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Yueying Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tingting Shen
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
5
|
Ling L, An Y, Wang D, Tang L, Du B, Shu Y, Bai Y, Guo C. Proteomic analysis reveals responsive mechanisms for saline-alkali stress in alfalfa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:146-159. [PMID: 34891071 DOI: 10.1016/j.plaphy.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/18/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Saline-alkali stress is a major abiotic stress that limits plant growth, yield, and geographical distribution. Alfalfa is a perennial legume with the largest planting area in the world because of its high protein content, good palatability, and long utilization life. However, saline-alkali stress seriously affects alfalfa yield and quality. To better understand the saline-alkali stress response mechanisms of alfalfa, an isobaric tags proteomics method was used to compare and analyse alfalfa under saline-alkali stress for 0, 1, and 7 days, and 126 (1 vs. 0 days) and 1869 (7 vs. 0 days) differentially abundant proteins (DAPs) were found. Through integrative analysis with differentially expressed genes (DEGs), we found correlated DEGs-DAPs of RNA and protein with similar expression trends at the mRNA and protein levels; these were mainly involved in ABA and Ca2+ signal pathways, regulation of photosynthesis, ROS scavenging, secondary metabolism, and transcription factors (TFs) related to saline-alkali stress. Some genes not exhibiting such trends may have been regulated post-transcriptionally. Furthermore, through transgenic experiments, MsFTL was found to significantly improve the saline-alkali tolerance of plants. Overall, our findings provide important clues for understanding the molecular mechanisms underlying the response of alfalfa to saline-alkali stress.
Collapse
Affiliation(s)
- Lei Ling
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development, China
| | - Yimin An
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development, China
| | - Dan Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development, China
| | - Lu Tang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development, China
| | - Binghao Du
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development, China
| | - Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development, China
| | - Yan Bai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development, China.
| |
Collapse
|
6
|
Singh NRR, Sarma SS, Rao TN, Pant H, Srikanth VVSS, Kumar R. Cryo-milled nano-DAP for enhanced growth of monocot and dicot plants. NANOSCALE ADVANCES 2021; 3:4834-4842. [PMID: 36134311 PMCID: PMC9418578 DOI: 10.1039/d1na00283j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/19/2021] [Indexed: 05/12/2023]
Abstract
Phosphorus (P) is a limiting macronutrient that regulates plant growth and development based on the bioavailability of its inorganic form, i.e., orthophosphate (Pi). P plays a critical role in cell development, and it is a key component of ATP, DNA, lipids, and cell signaling machinery. Without the exogenous application of P fertilizers, the yield of crops will not meet the ever-growing demand in today's world. However, due to the non-renewable nature of natural P reserves and simultaneous rapid human population growth, food crops must be ultimately produced more than ever by using a lower P fertilizer input. Hence, the strategy of preparing nano-fertilizers was conceptualized and demonstrated with great success. For example, nano-diammonium phosphate (n-DAP) performed far better than the commercial granular DAP (c-DAP). However, nano-fertilizers, including n-DAP, cannot be produced on a large scale using the available processing methods. Herein, a novel processing strategy, namely cryo-milling, is demonstrated to prepare n-DAP on a kg-scale without altering DAP's bonding structure. Cryo-milling involves milling at liquid N2 temperatures and therefore helps in brittle fracture of coarser DAP particles into n-DAP particles. Cryo-milled n-DAP, with particle size ∼5000 times smaller but specific surface area ∼14 000 times greater than that of c-DAP, enhanced the growth of monocot (wheat) and dicot (tomato) plants due to improved bioavailability of Pi even for a far lower input than c-DAP. Phenotypic observations such as higher leaf biomass, longer shoots, shorter roots, and less anthocyanin pigmentation manifested the extraordinary efficacy of cryo-milled n-DAP for 75% lower input than c-DAP.
Collapse
Affiliation(s)
- Naorem Ronald Reagan Singh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad Gachibowli Hyderabad - 500046 Telangana India
| | - Sreedhara Sudhakara Sarma
- International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) Hyderabad - 500005 Telangana India
| | - Tata Narsinga Rao
- International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI) Hyderabad - 500005 Telangana India
| | - Harita Pant
- School of Engineering Sciences and Technology, University of Hyderabad Gachibowli Hyderabad - 500046 Telangana India
| | | | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad Gachibowli Hyderabad - 500046 Telangana India
| |
Collapse
|
7
|
Srivastava R, Sirohi P, Chauhan H, Kumar R. The enhanced phosphorus use efficiency in phosphate-deficient and mycorrhiza-inoculated barley seedlings involves activation of different sets of PHT1 transporters in roots. PLANTA 2021; 254:38. [PMID: 34312721 DOI: 10.1007/s00425-021-03687-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Transcriptional activation of subfamily II PHT1 members in roots is associated with the enhanced phosphorus use efficiency and growth promotion of barley seedlings inoculated with Glomus species. The arbuscular mycorrhizal (AM) fungi symbiotic associations in cereal crops are known to regulate growth in cultivar-specific manner and induce phosphate (Pi) transporters (PHT1) in roots. In the present study, we observed that both AM colonization of roots by Glomus species and phosphate starvation enhanced phosphorus use efficiency (PUE) in barley seedlings. Our search for the full complement of PHT1 members in the recently sequenced barley genome identified six additional genes, totaling their number to 17. Both AM colonization and Pi starvation triggered activation of common as well as different PHT1s. Pi starvation led to the robust upregulation of HvPHT1;6.2/6.3 at 7d and weak activation of HvPHT1;1 in shoots at 3d time-point. In roots, only HvPHT1;1, HvPHT1;6.2/6.3, HvPHT1;7, HvPHT1;8, HvPHT1;11.2 and HvPHT12 were induced at least one of the time-points. AM colonization specifically upregulated HvPHT1;11, HvPHT1;11.2, HvPHT1;12 and HvPHT1;13.1/13.2, members belonging to subfamily II, in roots. Sucrose availability seems to be obligatory for the robust activation of HvPHT1;1 as unavailability of this metabolite generally weakened its upregulation under Pi starvation. Intriguingly, lack of sucrose supply also led to induction of HvPHT1;5, HvPHT1;8, and HvPHT1;11.2 in either roots or shoot or both. The mRNA levels of HvPHT1;5 and HvPHT1;11.2 were not severely affected under combined deficiency of Pi and sucrose. Taken together, this study not only identify additional PHT1 members in barley, but also ascertain their AM, Pi and sucrose-specific transcript accumulation. The beneficial role of AM fungi in the promotion of PUE and barley seedlings' growth is also demonstrated.
Collapse
Affiliation(s)
- Rajat Srivastava
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, 500046, India
| | - Parul Sirohi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India
| | - Harsh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247 667, India.
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana, 500046, India.
| |
Collapse
|