1
|
Su Z, Jia H, Sun M, Cai Z, Shen Z, Zhao B, Li J, Ma R, Yu M, Yan J. Integrative analysis of the metabolome and transcriptome reveals the molecular mechanism of chlorogenic acid synthesis in peach fruit. Front Nutr 2022; 9:961626. [PMID: 35928835 PMCID: PMC9344011 DOI: 10.3389/fnut.2022.961626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023] Open
Abstract
As the most abundant phenolic acid in peach fruit, chlorogenic acid (CGA) is an important entry point for the development of natural dietary supplements and functional foods. However, the metabolic and regulation mechanisms underlying its accumulation in peach fruits remain unclear. In this study, we evaluated the composition and content of CGAs in mature fruits of 205 peach cultivars. In peach fruits, three forms of CGA (52.57%), neochlorogenic acid (NCGA, 47.13%), and cryptochlorogenic acid (CCGA, 0.30%) were identified. During the growth and development of peach fruits, the content of CGAs generally showed a trend of rising first and then decreasing. Notably, the contents of quinic acid, shikimic acid, p-coumaroyl quinic acid, and caffeoyl shikimic acid all showed similar dynamic patterns to that of CGA, which might provide the precursor material basis for the accumulation of CGA in the later stage. Moreover, CGA, lignin, and anthocyanins might have a certain correlation and these compounds work together to maintain a dynamic balance. By the comparative transcriptome analysis, 8 structural genes (Pp4CL, PpCYP98A, and PpHCT) and 15 regulatory genes (PpMYB, PpWRKY, PpERF, PpbHLH, and PpWD40) were initially screened as candidate genes of CGA biosynthesis. Our findings preliminarily analyzed the metabolic and molecular regulation mechanisms of CGA biosynthesis in peach fruit, which provided a theoretical basis for developing high-CGA content peaches in future breeding programs.
Collapse
Affiliation(s)
- Ziwen Su
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Haoran Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Meng Sun
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Zhixiang Cai
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Zhijun Shen
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Bintao Zhao
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiyao Li
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ruijuan Ma
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Mingliang Yu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Juan Yan
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
- *Correspondence: Juan Yan,
| |
Collapse
|
2
|
Zhou S, Chen L, Chen G, Li Y, Yang H. Molecular Mechanisms through Which Short-Term Cold Storage Improves the Nutritional Quality and Sensory Characteristics of Postharvest Sweet Potato Tuberous Roots: A Transcriptomic Study. Foods 2021; 10:2079. [PMID: 34574188 PMCID: PMC8469081 DOI: 10.3390/foods10092079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.) is a commercially relevant food crop with high demand worldwide. This species belongs to the Convolvulaceae family and is native to tropical and subtropical regions. Storage temperature and time can adversely affect tuberous roots' quality and nutritional profile. Therefore, this study evaluates the effect of storage parameters using physicochemical and transcriptome analyses. Freshly harvested tuberous roots (Xingxiang) were stored at 13 °C (control) or 5 °C (cold storage, CS) for 21 d. The results from chilling injury (CI) evaluation demonstrated that there was no significant difference in appearance, internal color, weight, and relative conductivity between tuberous roots stored at 13 and 5 °C for 14 d and indicated that short-term CS for 14 d promoted the accumulation of sucrose, chlorogenic acid, and amino acids with no CI symptoms development. This, in turn, improved sweetness, antioxidant capacity, and nutritional value of the tuberous roots. Transcriptome analyses revealed that several key genes associated with sucrose, chlorogenic acid, and amino acid biosynthesis were upregulated during short-term CS, including sucrose synthase, sucrose phosphate synthase, phenylalanine ammonia-lyase, 4-coumarate-CoA ligase, hydroxycinnamoyl-CoA quinate hydroxycinnamoyltransferase, serine hydroxymethyltransferase, alanine aminotransferase, arogenate dehydrogenase, and prephenate dehydratase. These results indicated that storage at 5 °C for 14 d could improve the nutritional quality and palatability of sweet potato tuberous roots without compromising their freshness.
Collapse
Affiliation(s)
| | | | | | | | - Huqing Yang
- School of Food and Health, Zhejiang Agricultural & Forestry University, Wusu Street #666, Lin’an District, Hangzhou 311300, China; (S.Z.); (L.C.); (G.C.); (Y.L.)
| |
Collapse
|