1
|
Li X, Li S, Qiang X, Yu Z, Sun Z, Wang R, He J, Han L, Li Q. Effects of Water and Nitrogen Regulation on Apple Tree Growth, Yield, Quality, and Their Water and Nitrogen Utilization Efficiency. PLANTS (BASEL, SWITZERLAND) 2024; 13:2404. [PMID: 39273888 PMCID: PMC11396910 DOI: 10.3390/plants13172404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
Apple tree productivity is influenced by the quantity of water and nutrients that are supplied during planting. To enhance resource utilization efficiency and optimize yields, a suitable strategy for supplying water and nitrogen must be established. A field experiment was conducted using a randomized block group design on five-year-old apple trees in Ningxia, with two irrigation lower limit levels (55%FC (W1) and 75%FC (W2)) and four N application levels (0 (N1), 120 (N2), 240 (N3), and 360 (N4) kg·ha-1). Our findings showed that leaf N content increased with a higher irrigation lower limit, but the difference was not statistically significant. However, the leaf N content significantly increased with increasing N application. The growth pattern of new shoots followed logistic curve characteristics, with the maximum new shoot growth rate and time of new shoot growth being delayed under high water and high nitrogen treatments. Apple yield and yield components (weight per fruit and number of fruits per plant) were enhanced under N application compared to no N application. The maximum apple yields were 19,405.3 kg·ha-1 (2022) and 29,607 kg·ha-1 (2023) at the N3 level. A parabolic relationship was observed between apple yield and N application level, with the optimal range of N application being 230-260 kg⸱ha-1. Apple quality indicators were not significantly affected by the irrigation lower limit but were significantly influenced by N application levels. The lower limit of irrigation did not have a significant impact on the quality indicators of the apples. Water and N utilization efficiencies improved with the W2 treatment at the same N application level. A negative relationship was observed between the amount of nitrogen applied and the biased productivity of nitrogen fertilizer. The utilization of nitrogen fertilizer was 127.6 kg·kg-1 (2022) and 200.3 kg·kg-1 (2023) in the W2N2 treatment. The apple yield was sustained, the quality of the fruit improved, and a substantial increase in water productivity was achieved with the W2N3 treatment. The findings of this study can be used as a reference for accurate field irrigation.
Collapse
Affiliation(s)
- Xingqiang Li
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
- China-Arab Joint International Research Laboratory for Featured Resources and Environmental Governance in Arid Region, Yinchuan 750021, China
- Key Laboratory of Resource Assessment and Environmental Control in Arid Region of Ningxia, Yinchuan 750021, China
| | - Siqi Li
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
- China-Arab Joint International Research Laboratory for Featured Resources and Environmental Governance in Arid Region, Yinchuan 750021, China
- Key Laboratory of Resource Assessment and Environmental Control in Arid Region of Ningxia, Yinchuan 750021, China
| | - Xiaolin Qiang
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
- China-Arab Joint International Research Laboratory for Featured Resources and Environmental Governance in Arid Region, Yinchuan 750021, China
- Key Laboratory of Resource Assessment and Environmental Control in Arid Region of Ningxia, Yinchuan 750021, China
| | - Zhao Yu
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
- China-Arab Joint International Research Laboratory for Featured Resources and Environmental Governance in Arid Region, Yinchuan 750021, China
- Key Laboratory of Resource Assessment and Environmental Control in Arid Region of Ningxia, Yinchuan 750021, China
| | - Zhaojun Sun
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
- China-Arab Joint International Research Laboratory for Featured Resources and Environmental Governance in Arid Region, Yinchuan 750021, China
- Key Laboratory of Resource Assessment and Environmental Control in Arid Region of Ningxia, Yinchuan 750021, China
| | - Rong Wang
- School of Mechanical Engineering, Ningxia Vocational Technical College of Industry & Commerce, Yinchuan 750021, China
| | - Jun He
- China-Arab Joint International Research Laboratory for Featured Resources and Environmental Governance in Arid Region, Yinchuan 750021, China
- Key Laboratory of Resource Assessment and Environmental Control in Arid Region of Ningxia, Yinchuan 750021, China
| | - Lei Han
- China-Arab Joint International Research Laboratory for Featured Resources and Environmental Governance in Arid Region, Yinchuan 750021, China
- Key Laboratory of Resource Assessment and Environmental Control in Arid Region of Ningxia, Yinchuan 750021, China
| | - Qian Li
- China-Arab Joint International Research Laboratory for Featured Resources and Environmental Governance in Arid Region, Yinchuan 750021, China
- Key Laboratory of Resource Assessment and Environmental Control in Arid Region of Ningxia, Yinchuan 750021, China
| |
Collapse
|
2
|
Guo L, Niu L, Zhu X, Wang L, Zhang K, Li D, Elumalai P, Gao X, Ji J, Cui J, Luo J. Moderate nitrogen application facilitates Bt cotton growth and suppresses population expansion of aphids ( Aphis gossypii) by altering plant physiological characteristics. FRONTIERS IN PLANT SCIENCE 2024; 15:1328759. [PMID: 38510447 PMCID: PMC10950987 DOI: 10.3389/fpls.2024.1328759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
Introduction Excessive application of nitrogen fertilizer in cotton field causes soil and water pollution as well as significant increase of aphid population. Reasonable fertilization is an important approach to improve agricultural production efficiency and reduce agriculture-derived pollutions. This study was aimed to explore the effects of nitrogen fertilizer on the Bt cotton physiological characteristics and the growth and development of A. gossypii, a sap-sucking cotton pest. Methods Five different levels of Ca(NO3)2 (0.0 g/kg, 0.3 g/kg, 0.9 g/kg, 2.7 g/kg and 8.1 g/kg) were applied into vermiculite as nitrogen fertilizer in order to explore the effects of nitrogen fertilizer on the growth and development of Bt cotton and aphids. Results The results showed that the medium level of nitrogen fertilizer (0.9 g/kg) effectively facilitated the growth of Bt cotton plant and suppressed the population expansion of aphids, whereas high and extremely high nitrogen application (2.7 and 8.1 g/kg) significantly increased the population size of aphids. Both high and low nitrogen application benefited aphid growth in multiple aspects such as prolonging nymph period and adult lifespan, enhancing fecundity, and improving adult survival rate by elevating soluble sugar content in host Bt cotton plants. Cotton leaf Bt toxin content in medium nitrogen group (0.9 g/kg) was significantly higher than that in high (2.7 and 8.1 g/kg) and low (0.3 g/kg) nitrogen groups, but Bt toxin content in aphids was very low in all the nitrogen treatment groups, suggesting that medium level (0.9 g/kg) might be the optimal nitrogen fertilizer treatment level for promoting cotton seedling growth and inhibiting aphids. Discussion Overall, this study provides insight into trophic interaction among nitrogen fertilizer levels, Bt cotton, and cotton aphid, and reveals the multiple effects of nitrogen fertilizer levels on growth and development of cotton and aphids. Our findings will contribute to the optimization of the integrated management of Bt cotton and cotton aphids under nitrogen fertilization.
Collapse
Affiliation(s)
- Lixiang Guo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lin Niu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Punniyakotti Elumalai
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xueke Gao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jichao Ji
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jinjie Cui
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Junyu Luo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
3
|
Wang Z, Yang T, Mei X, Wang N, Li X, Yang Q, Dong C, Jiang G, Lin J, Xu Y, Shen Q, Jousset A, Banerjee S. Bio-Organic Fertilizer Promotes Pear Yield by Shaping the Rhizosphere Microbiome Composition and Functions. Microbiol Spectr 2022; 10:e0357222. [PMID: 36453930 PMCID: PMC9769518 DOI: 10.1128/spectrum.03572-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Bio-organic fertilizers (BOF) containing both organic amendments and beneficial microorganisms have been consistently shown to improve soils fertility and yield. However, the exact mechanisms which link amendments and yields remain disputed, and the complexity of bio-organic fertilizers may work in parallel in several ways. BOF may directly improve yield by replenishing soil nutrients or introducing beneficial microbial genes or indirectly by altering the soil microbiome to enrich native beneficial microorganisms. In this work, we aim to disentangle the relative contributions of direct and indirect effects on pear yield. We treated pear trees with either chemical fertilizer or organic fertilizer with/without the plant-beneficial bacterium Bacillus velezensis SQR9. We then assessed, in detail, soil physicochemical and biological properties (metagenome sequencing) as well as pear yield. We then evaluated the relative importance of direct and indirect effects of soil amendments on pear yield. Both organic treatments increased plant yield by up to 20%, with the addition of bacteria tripling the increase driven by organic fertilizer alone. This increase could be linked to alterations in soil physicochemical properties, bacterial community function, and metabolism. Supplementation of organic fertilizer SQR9 increased rhizosphere microbiome richness and functional diversity. Fertilizer-sensitive microbes and functions responded as whole guilds. Pear yield was most positively associated with the Mitsuaria- and Actinoplanes-dominated ecological clusters and with gene clusters involved in ion transport and secondary metabolite biosynthesis. Together, these results suggested that bio-organic fertilizers mainly act indirectly on plant yield by creating soil chemical properties which promote a plant-beneficial microbiome. IMPORTANCE Bio-organic fertilization is a widely used, eco-friendly, sustainable approach to increasing plant productivity in the agriculture and fruit industries. However, it remains unclear whether the promotion of fruit productivity is related to specific changes in microbial inoculants, the resident microbiome, and/or the physicochemical properties of rhizosphere soils. We found that bio-organic fertilizers alter soil chemical properties, thus manipulating specific microbial taxa and functions within the rhizosphere microbiome of pear plants to promote yield. Our work unveils the ecological mechanisms which underlie the beneficial impacts of bio-organic fertilizers on yield promotion in fruit orchards, which may help in the design of more efficient biofertilizers to promote sustainable fruit production.
Collapse
Affiliation(s)
- Zhonghua Wang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Tianjie Yang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xinlan Mei
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Ningqi Wang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Xiaogang Li
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Qingsong Yang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Caixia Dong
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Gaofei Jiang
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Jing Lin
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Yangchun Xu
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Alexandre Jousset
- Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, Key Laboratory of Plant immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, China
| | - Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|