1
|
Luo M, Chu J, Wang Y, Chang J, Zhou Y, Jiang X. A high-affinity potassium transporter (MeHKT1) from cassava (Manihot esculenta) negatively regulates the response of transgenic Arabidopsis to salt stress. BMC PLANT BIOLOGY 2024; 24:372. [PMID: 38714917 PMCID: PMC11075273 DOI: 10.1186/s12870-024-05084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND High-affinity potassium transporters (HKTs) are crucial in facilitating potassium uptake by plants. Many types of HKTs confer salt tolerance to plants through regulating K+ and Na+ homeostasis under salinity stress. However, their specific functions in cassava (Manihot esculenta) remain unclear. RESULTS Herein, an HKT gene (MeHKT1) was cloned from cassava, and its expression is triggered by exposure to salt stress. The expression of a plasma membrane-bound protein functions as transporter to rescue a low potassium (K+) sensitivity of yeast mutant strain, but the complementation of MeHKT1 is inhibited by NaCl treatment. Under low K+ stress, transgenic Arabidopsis with MeHKT1 exhibits improved growth due to increasing shoot K+ content. In contrast, transgenic Arabidopsis accumulates more Na+ under salt stress than wild-type (WT) plants. Nevertheless, the differences in K+ content between transgenic and WT plants are not significant. Additionally, Arabidopsis expressing MeHKT1 displayed a stronger salt-sensitive phenotype. CONCLUSION These results suggest that under low K+ condition, MeHKT1 functions as a potassium transporter. In contrast, MeHKT1 mainly transports Na+ into cells under salt stress condition and negatively regulates the response of transgenic Arabidopsis to salt stress. Our results provide a reference for further research on the function of MeHKT1, and provide a basis for further application of MeHKT1 in cassava by molecular biological means.
Collapse
Affiliation(s)
- Minghua Luo
- National Center for Technology Innovation of Saline-Alkali tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Jing Chu
- National Center for Technology Innovation of Saline-Alkali tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Yu Wang
- National Center for Technology Innovation of Saline-Alkali tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Jingyan Chang
- National Center for Technology Innovation of Saline-Alkali tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou, 570228, China.
| | - Xingyu Jiang
- National Center for Technology Innovation of Saline-Alkali tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Kaya C, Uğurlar F, Adamakis IDS. Molecular Mechanisms of CBL-CIPK Signaling Pathway in Plant Abiotic Stress Tolerance and Hormone Crosstalk. Int J Mol Sci 2024; 25:5043. [PMID: 38732261 PMCID: PMC11084290 DOI: 10.3390/ijms25095043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Abiotic stressors, including drought, salt, cold, and heat, profoundly impact plant growth and development, forcing elaborate cellular responses for adaptation and resilience. Among the crucial orchestrators of these responses is the CBL-CIPK pathway, comprising calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs). While CIPKs act as serine/threonine protein kinases, transmitting calcium signals, CBLs function as calcium sensors, influencing the plant's response to abiotic stress. This review explores the intricate interactions between the CBL-CIPK pathway and plant hormones such as ABA, auxin, ethylene, and jasmonic acid (JA). It highlights their role in fine-tuning stress responses for optimal survival and acclimatization. Building on previous studies that demonstrated the enhanced stress tolerance achieved by upregulating CBL and CIPK genes, we explore the regulatory mechanisms involving post-translational modifications and protein-protein interactions. Despite significant contributions from prior research, gaps persist in understanding the nuanced interplay between the CBL-CIPK system and plant hormone signaling under diverse abiotic stress conditions. In contrast to broader perspectives, our review focuses on the interaction of the pathway with crucial plant hormones and its implications for genetic engineering interventions to enhance crop stress resilience. This specialized perspective aims to contribute novel insights to advance our understanding of the potential of the CBL-CIPK pathway to mitigate crops' abiotic stress.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa 63200, Turkey; (C.K.); (F.U.)
| | - Ferhat Uğurlar
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa 63200, Turkey; (C.K.); (F.U.)
| | | |
Collapse
|
3
|
Luo M, Chu J, Wang Y, Chang J, Zhou Y, Jiang X. Positive Regulatory Roles of Manihot esculenta HAK5 under K + Deficiency or High Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:849. [PMID: 38592853 PMCID: PMC10974855 DOI: 10.3390/plants13060849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
HAK/KUP/KT family members have been identified as playing key roles in K+ uptake and salt tolerance in numerous higher plants. However, their functions in cassava (Manihot esculenta Cantz) remain unknown. In this study, a gene encoding for a high-affinity potassium transporter (MeHAK5) was isolated from cassava and its function was investigated. Subcellular localization analysis showed that MeHAK5 is a plasma membrane-localized transporter. RT-PCR and RT-qPCR indicated that MeHAK5 is predominantly expressed in cassava roots, where it is upregulated by low potassium or high salt; in particular, its highest expression levels separately increased by 2.2 and 2.9 times after 50 µM KCl and 150 mM NaCl treatments. When heterologously expressed in yeast, MeHAK5 mediated K+ uptake within the cells of the yeast strain CY162 and rescued the salt-sensitive phenotype of AXT3K yeast. MeHAK5 overexpression in transgenic Arabidopsis plants exhibited improved growth and increased shoot K+ content under low potassium conditions. Under salt stress, MeHAK5 transgenic Arabidopsis plants accumulated more K+ in the shoots and roots and had reduced Na+ content in the shoots. As a result, MeHAK5 transgenic Arabidopsis demonstrated a more salt-tolerant phenotype. These results suggest that MeHAK5 functions as a high-affinity K+ transporter under K+ starvation conditions, improving K+/Na+ homeostasis and thereby functioning as a positive regulator of salt stress tolerance in transgenic Arabidopsis. Therefore, MeHAK5 may be a suitable candidate gene for improving K+ utilization efficiency and salt tolerance.
Collapse
Affiliation(s)
- Minghua Luo
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (M.L.); (J.C.); (Y.W.)
| | - Jing Chu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (M.L.); (J.C.); (Y.W.)
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Yu Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (M.L.); (J.C.); (Y.W.)
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Jingyan Chang
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (M.L.); (J.C.); (Y.W.)
| | - Xingyu Jiang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Life and Health Sciences, Hainan University, Haikou 570228, China; (M.L.); (J.C.); (Y.W.)
- National Center for Technology Innovation of Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| |
Collapse
|
4
|
Chen X, Luo M, Mo C, Li W, Ji Y, Xie Q, Jiang X. MeCIPK10 regulates the transition of the K + transport activity of MeAKT2 between low- and high-affinity molds in cassava. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153861. [PMID: 36399835 DOI: 10.1016/j.jplph.2022.153861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
AKT1 is an inward-rectifying K+ channel that was originally thought to function only within a low-affinity K+ concentration range. However, the growth of an akt1 mutant of Arabidopsis was shown to be severely inhibited within a high-affinity range. This suggested that AKT1 may also be a high-affinity K+ transporter, but it remains unclear how the two modes of AKT1 coordinate to uptake K+. One gene (MeAKT2) encodes for a putatively inward-rectifying K+ channel and was isolated from cassava. Relative to other tissues, the MeAKT2 gene was expressed mainly in roots, and its transcriptional level was observed to be significantly increased under low-K+ conditions. Functional analyses were performed using a yeast expression system. When MeAKT2 was expressed alone in yeast cells, transgenic yeast could grow only in nutrient media supplied with >0.5 mM potassium. A yeast two-hybrid assay showed that both MeCIPK10 and MeCIPK12 clearly interacted with MeAKT2. Additionally, 0.05 mM K+ was sufficient for the growth of yeast cells co-expressing MeAKT2 with MeCIPK10, but also their co-expression significantly enhanced the growth capacity of yeast cells in the low range of K+ concentrations. Change in K+ uptake rate in co-transgenic yeast cells grown across a wide range of K+ concentrations showed that MeAKT2-mediated K+ uptake displayed a biphasic pattern, but also the switching from low-to high-affinity K+ uptake was regulated by CIPK10. This indicated that MeAKT2 functioned as a dual-affinity transporter to uptake K+ under both low- and high-affinity K+ conditions.
Collapse
Affiliation(s)
- Xiuzhen Chen
- National Center for Technology Innovation of Saline-Alkali Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China; Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Crops, Hainan University, Haikou, 570228, China; Lixia District Center for Disease Control and Prevention, Jinan, 250014, China
| | - Minghua Luo
- National Center for Technology Innovation of Saline-Alkali Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China; Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Chunyan Mo
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Wenjia Li
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yiying Ji
- National Center for Technology Innovation of Saline-Alkali Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qing Xie
- National Center for Technology Innovation of Saline-Alkali Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Xingyu Jiang
- National Center for Technology Innovation of Saline-Alkali Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China; Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/Institute of Tropical Crops, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Luo Q, Feng J, Yang G, He G. Functional characterization of BdCIPK31 in plant response to potassium deficiency stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:243-251. [PMID: 36272191 DOI: 10.1016/j.plaphy.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Potassium (K) is one of the most essential macronutrients for plants. However, K+ is deficient in some cultivated soils. Hence, improving the efficiencies of K+ uptake and utilization is important for agricultural production. Ca2+ signaling pathways play an important role in regulation of K+ acquisition. In the present study, BdCIPK31, a Calcineurin B-like protein interacting protein kinase (CIPK) from Brachypodium distachyon, was found to be a potential positive regulator in plant response to low K+ stress. The expression of BdCIPK31 was responsive to K+-deficiency, and overexpression of BdCIPK31 conferred enhanced tolerance to low K+ stress in transgenic tobaccos. Furthermore, BdCIPK31 was demonstrated to promote the K+ uptake in root, and could maintain normal root growth under K+-deficiency conditions. Additionally, BdCIPK31 functioned in scavenging excess reactive oxygen species (ROS), reduced oxidative damage caused by low K+ stress. Collectively, our study indicates that BdCIPK31 is a vital regulatory component in K+-acquisition system in plants.
Collapse
Affiliation(s)
- Qingchen Luo
- Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Department of Chemistry and Life Science, Hubei University of Education, Wuhan, 430205, China; The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jialu Feng
- School of Medicine, Wuhan University of Science and Technology, Wuhan, 430081, China; The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
6
|
Sequence Characteristics and Expression Analysis of GhCIPK23 Gene in Upland Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2022; 23:ijms231912040. [PMID: 36233340 PMCID: PMC9570493 DOI: 10.3390/ijms231912040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
CIPK (calcineurin B-like-interacting protein kinase) is a kind of serine/threonine protein kinase widely existing in plants, and it plays an important role in plant growth and development and stress response. To better understand the biological functions of the GhCIPK23 gene in upland cotton, the coding sequence (CDS) of the GhCIPK23 gene was cloned in upland cotton, and its protein sequence, evolutionary relationship, subcellular localization, expression pattern and cis-acting elements in the promoter region were analyzed. Our results showed that the full-length CDS of GhCIPK23 was 1368 bp, encoding a protein with 455 amino acids. The molecular weight and isoelectric point of this protein were 50.83 KDa and 8.94, respectively. The GhCIPK23 protein contained a conserved N-terminal protein kinase domain and C-terminal regulatory domain of the CIPK gene family member. Phylogenetic tree analysis demonstrated that GhCIPK23 had a close relationship with AtCIPK23, followed by OsCIPK23, and belonged to Group A with AtCIPK23 and OsCIPK23. The subcellular localization experiment indicated that GhCIPK23 was located in the plasma membrane. Tissue expression analysis showed that GhCIPK23 had the highest expression in petals, followed by sepals, and the lowest in fibers. Stress expression analysis showed that the expression of the GhCIPK23 gene was in response to drought, salt, low-temperature and exogenous abscisic acid (ABA) treatment, and had different expression patterns under different stress conditions. Further cis-acting elements analysis showed that the GhCIPK23 promoter region had cis-acting elements in response to abiotic stress, phytohormones and light. These results established a foundation for understanding the function of GhCIPK23 and breeding varieties with high-stress tolerance in cotton.
Collapse
|
7
|
Zeng H, Hu W, Liu G, Xu H, Wei Y, Zhang J, Shi H. Microbiome-wide association studies between phyllosphere microbiota and ionome highlight the beneficial symbiosis of Lactococcus lactis in alleviating aluminium in cassava. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:66-74. [PMID: 34971956 DOI: 10.1016/j.plaphy.2021.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
The phyllosphere is one of the most abundant habitats for global microbiota. The ionome is the composition of mineral elements in plants. The correlation between phyllosphere microbiota and the ionome remains elusive in plants, especially in the most important tropical crop cassava. In this study, microbiome-wide association studies (MWASs) of thirty varieties were performed to reveal the association between phyllosphere microbiota and ionomic variations in cassava. Annotation of metagenomic species identified some species that were significantly correlated with ionomic variations in cassava. Among them, Lactococcus lactis abundance was negatively associated with leaf aluminium (Al) levels but positively related to leaf potassium (K) levels. Notably, both the reference and isolated L. lactis showed strong binding capacity to Al. Further bacterial transplantation of isolated L. lactis could significantly decrease endogenous Al levels but increase K levels in cassava, and it can also lead to increased citric acid and lactic acid levels as well as higher transcript levels of K uptake-related genes. Taken together, this study reveals the involvement of phyllosphere microbiota in ionomic variation in cassava, and the correlation between L. lactis abundance and Al and K levels provides novel insights into alleviating Al accumulation and promoting K uptake simultaneously.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan province, 571101, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Haoran Xu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China
| | - Jiachao Zhang
- College of Food Science and Engineering, Hainan University, Haikou, Hainan province, 570228, China.
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan province, 570228, China.
| |
Collapse
|
8
|
Chen P, Yang J, Mei Q, Liu H, Cheng Y, Ma F, Mao K. Genome-Wide Analysis of the Apple CBL Family Reveals That Mdcbl10.1 Functions Positively in Modulating Apple Salt Tolerance. Int J Mol Sci 2021; 22:ijms222212430. [PMID: 34830311 PMCID: PMC8624107 DOI: 10.3390/ijms222212430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Abiotic stresses are increasingly harmful to crop yield and quality. Calcium and its signaling pathway play an important role in modulating plant stress tolerance. As specific Ca2+ sensors, calcineurin B-like (CBL) proteins play vital roles in plant stress response and calcium signaling. The CBL family has been identified in many plant species; however, the characterization of the CBL family and the functional study of apple MdCBL proteins in salt response have yet to be conducted in apple. In this study, 11 MdCBL genes were identified from the apple genome. The coding sequences of these MdCBL genes were cloned, and the gene structure and conserved motifs were analyzed in detail. The phylogenetic analysis indicated that these MdCBL proteins could be divided into four groups. The functional identification in Na+-sensitive yeast mutant showed that the overexpression of seven MdCBL genes could confer enhanced salt stress resistance in transgenic yeast. The function of MdCBL10.1 in regulating salt tolerance was also verified in cisgenic apple calli and apple plants. These results provided valuable insights for future research examining the function and mechanism of CBL proteins in regulating apple salt tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ke Mao
- Correspondence: (F.M.); (K.M.)
| |
Collapse
|