1
|
Xu H, Sutar PP, Ren W, Wu M. Revealing the mechanism of post-harvest processing on rose quality based on dynamic changes in water content, enzyme activity, volatile and non-volatile metabolites. Food Chem 2024; 448:139202. [PMID: 38579556 DOI: 10.1016/j.foodchem.2024.139202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
Existing studies on post-harvest processing of edible roses have mainly focused on processing techniques and physicochemical properties of the final dried products, with limited studies on how changes in metabolites during processing affect the quality of these products. This study investigated changes in water content and status, enzyme activity, phenolic compounds, and volatile and non-volatile compounds during processing and revealed the mechanisms by which post-harvest processing (drying without blanching (WBD) and drying with blanching (BD)) affects the quality of dried roses by establishing their correlations. Results showed that the blanching reduced the relative content of free water and water activity, thus reducing the subsequent drying time and enzyme activity. The BD method caused higher levels of phenolic compounds than the WBD method in terms of gallic acid, ellagic acid, epicatechin, and quercetin. The OPLS-DA analysis identified 6 differential volatiles out of 72 detected volatiles, contributing to the unique aroma of dried roses by activating olfactory receptors through hydrogen bonding and hydrophobic interactions. 58 differential metabolites were screened from 964 non-volatile metabolites. KEGG pathway analysis revealed that the changes in volatile and non-volatile metabolites induced by different processing methods were due to the effect of blanching on glutathione and fatty acid metabolism. These findings provide a comprehensive understanding of how post-harvest processing affects the quality of dried roses.
Collapse
Affiliation(s)
- Huihuang Xu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Weike Ren
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
2
|
Li L, Chen L, Pan D, Zhu Y, Huang R, Chen J, Ye C, Yao S. Evaluation of different drying methods on the quality of Cinnamomum cassia barks by analytic hierarchy process method. Heliyon 2024; 10:e34608. [PMID: 39114071 PMCID: PMC11305288 DOI: 10.1016/j.heliyon.2024.e34608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Cinnamomum cassia Presl is a major food spice as well as traditional herbal medicine with anti-inflammatory, analgesic, and stomachic properties, which must be dried to preserve its quality, but mostly by using traditional, ineffective drying method. In order to find a scientific drying method by evaluating different drying methods that could influence the quality of C. cassia, ten indices were employed to evaluate different drying methods in C. cassia using the Analytic Hierarchy Process (AHP) method though calculating the total scores and ranking the priority. Four quality markers (Q-Markers) (coumarin, cinnamyl alcohol, cinnamaldehyde and o-methoxycinnamaldehyde) were isolated from the samples and analyzed by high performance liquid chromatography (HPLC) method under different drying methods. The results showed that various drying methods had multiple effects on the physicochemical qualities, essential oil content, and Q-Marker contents. Compared with other drying methods, oven-drying of 45 °C (45OD) maintained optimal levels of color and aroma, it also significantly shortened the drying time by 225 h than traditionally shade-drying (SHD) method with the drying rate (48.35 %), and obtained the highest essential oil content (3.05 %) and Q-Marker contents (30.23 mg g-1). Furthermore, the ash content (4.22 %) were satisfied with the stipulation of Chinese pharmacopoeia in 45OD samples. Applying AHP allowed us to identify 45OD as the optimal drying method with the highest total score (9.00), followed by the traditional shade-drying (SHD) method (7.88). The present study is the first report to apply the AHP method for quality evaluation of drying processing in C. cassia. It can provide the theoretical basis for evaluating an excellent method for C. cassia drying processing, as well as the rational use of different drying methods to furtherly develop the high quality C. cassia industry.
Collapse
Affiliation(s)
- Linshuang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liuping Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Dongjin Pan
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Ying Zhu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Jing Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Chenying Ye
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Shaochang Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China
| |
Collapse
|
3
|
Zhou Y, Yang W, Zhu S, Wei J, Zhou X, Wang M, Lu H. Evaluation of Aromatic Characteristics and Potential Applications of Hemerocallis L. Based on the Analytic Hierarchy Process. Molecules 2024; 29:2712. [PMID: 38893586 PMCID: PMC11173393 DOI: 10.3390/molecules29112712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Hemerocallis L. possesses abundant germplasm resources and holds significant value in terms of ornamental, edible, and medicinal aspects. However, the quality characteristics vary significantly depending on different varieties. Selection of a high-quality variety with a characteristic aroma can increase the economic value of Hemerocallis flowers. The analytic hierarchy process (AHP) is an effective decision-making method for comparing and evaluating multiple characteristic dimensions. By applying AHP, the aromatic character of 60 varieties of Hemerocallis flowers were analyzed and evaluated in the present study. Headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) was employed to identify volatile components in Hemerocallis flowers. Thirteen volatile components were found to contribute to the aroma of Hemerocallis flowers, which helps in assessing their potential applications in essential oil, aromatherapy, and medical treatment. These components include 2-phenylethanol, geraniol, linalool, nonanal, decanal, (E)-β-ocimene, α-farnesene, indole, nerolidol, 3-furanmethanol, 3-carene, benzaldehyde and benzenemethanol. The varieties with better aromatic potential can be selected from a large amount of data using an AHP model. This study provides a comprehensive understanding of the characteristics of the aroma components in Hemerocallis flowers, offers guidance for breeding, and enhances the economic value of Hemerocallis flowers.
Collapse
Affiliation(s)
- Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Y.Z.); (X.Z.)
| | - Wei Yang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Y.Z.); (X.Z.)
| | - Siyi Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Y.Z.); (X.Z.)
| | - Jianan Wei
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Y.Z.); (X.Z.)
| | - Xiaoli Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Y.Z.); (X.Z.)
| | - Minglong Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (Y.Z.); (X.Z.)
| | - Hongxiu Lu
- Department of Biomedicine and Health Sciences, Shanghai Vocational College of Agriculture and Forestry, Shanghai 201699, China
| |
Collapse
|
4
|
Zhao H, Masood HA, Muhammad S. Unveiling the aesthetic secrets: exploring connections between genetic makeup, chemical, and environmental factors for enhancing/improving the color and fragrance/aroma of Chimonanthus praecox. PeerJ 2024; 12:e17238. [PMID: 38650650 PMCID: PMC11034496 DOI: 10.7717/peerj.17238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Floral color and scent profiles vary across species, geographical locations, and developmental stages. The exclusive floral color and fragrance of Chimonanthus praecox is contributed by a range of endogenous chemicals that distinguish it from other flowers and present amazing ornamental value. This comprehensive review explores the intricate interplay of environmental factors, chemicals and genes shaping the flower color and fragrance of Chimonanthus praecox. Genetic and physiological factors control morpho-anatomical attributes as well as pigment synthesis, while environmental factors such as temperature, light intensity, and soil composition influence flower characteristics. Specific genes control pigment synthesis, and environmental factors such as temperature, light intensity, and soil composition influence flower characteristics. Physiological processes including plant hormone contribute to flower color and fragrance. Hormones, notably ethylene, exert a profound influence on varioustraits. Pigment investigations have spotlighted specific flavonoids, including kaempferol 3-O-rutinoside, quercetin, and rutin. Red tepals exhibit unique composition with cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside being distinctive components. Elucidating the molecular basis of tepal color variation, particularly in red and yellow varieties, involves the identification of crucial regulatory genes. In conclusion, this review unravels the mysteries of Chimonanthus praecox, providing a holistic understanding of its flower color and fragrance for landscape applications. This comprehensive review uniquely explores the genetic intricacies, chemical and environmental influences that govern the mesmerizing flower color and fragrance of Chimonanthus praecox, providing valuable insights for its landscape applications. This review article is designed for a diverse audience, including plant geneticists, horticulturists, environmental scientists, urban planners, and students, offering understandings into the genetic intricacies, ecological significance, and practical applications of Chimonanthus praecox across various disciplines. Its appeal extends to professionals and enthusiasts interested in plant biology, conservation, and industries dependent on unique floral characteristics.
Collapse
Affiliation(s)
- Haoyu Zhao
- MEU Research Unit, Middle East University, Amman, Jordan
- Faculty of Social and Cultural Communications, Belarusian State University, Minsk, Belarus
| | | | - Sher Muhammad
- Department of Biotechnology, University of Okara, Okara, Punjab, Pakistan
| |
Collapse
|
5
|
Zhao Q, Gu L, Li Y, Zhi H, Luo J, Zhang Y. Volatile Composition and Classification of Paeonia lactiflora Flower Aroma Types and Identification of the Fragrance-Related Genes. Int J Mol Sci 2023; 24:ijms24119410. [PMID: 37298360 DOI: 10.3390/ijms24119410] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Flower scent is one of the main ornamental characteristics of herbaceous peony, and the improvement of flower fragrance is a vital objective of herbaceous peony breeding. In this study, 87 herbaceous peony cultivars were divided into three groups (no/light fragrance, medium fragrance, and strong fragrance) based on their sensory evaluation scores, and 16 strong fragrance cultivars and one no fragrance cultivar were selected for subsequent analysis. Sixty-eight volatile components were detected in these 17 cultivars based on solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS), and 26 types were identified as important scent components. They were composed of terpenoids, benzenoids/phenylpropanoids, and fatty acid derivatives. According to the content and odor threshold of these main aroma components, the characteristic aroma substances of herbaceous peony were identified, including linalool, geraniol, citronellol, and phenylethyl alcohol (2-PE). The cultivars of strong scented herbaceous peony were divided into three types: rose scent, lily scent, and mixed scent. We explored the possible key genes of characteristic aroma substances in herbaceous peony petals with different odors through the qRT-PCR. The key genes encoding monoterpene biosynthesis were found to be PlDXS2, PlDXR1, PlMDS1, PlHDR1, PlGPPS3, and PlGPPS4. In addition, the linalool synthase (LIS) gene and the geraniol synthase (GES) gene were also found. PlAADC1, PlPAR1, and PlMAO1, related to the biosynthesis of 2-PE were detected, and the synthetic pathway of 2-PE was speculated. In conclusion, these findings revealed that the difference in gene expression of monoterpene and 2-PE synthesis pathway was related to the difference in the fragrance of herbaceous peony. This study explored the releasing pathway of herbaceous peony characteristic aroma substances and provided key genetic resources for fragrance improvement.
Collapse
Affiliation(s)
- Qian Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Lina Gu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Yuqing Li
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Hui Zhi
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Jianrang Luo
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- National Engineering Research Center for Oil Peony, Yangling 712100, China
| |
Collapse
|
6
|
Quan W, Jin J, Qian C, Li C, Zhou H. Characterization of volatiles in flowers from four Rosa chinensis cultivars by HS-SPME-GC × GC-QTOFMS. FRONTIERS IN PLANT SCIENCE 2023; 14:1060747. [PMID: 37251764 PMCID: PMC10211245 DOI: 10.3389/fpls.2023.1060747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/12/2023] [Indexed: 05/31/2023]
Abstract
Rosa chinensis cultivars with volatile aromas are important resources in the perfume industry. The four rose cultivars introduced to Guizhou province are rich in volatile substances. In this study, volatiles from four Rosa chinensis cultivars were extracted using headspace-solid phase microextraction (HS-SPME), and analyzed with two-dimensional gas chromatography quadrupole time of flight mass spectrometry (GC × GC-QTOFMS). A total of 122 volatiles were identified; the main compounds in these samples were benzyl alcohol, phenylethyl alcohol, citronellol, beta-myrcene and limonene. A total of 68, 78, 71, and 56 volatile compounds were identified in Rosa 'Blue River' (RBR), Rosa 'Crimson Glory' (RCG), Rosa 'Pink Panther' (RPP), and Rosa 'Funkuhr' (RF) samples, respectively. The total volatile contents were in the following order: RBR > RCG > RPP > RF. Four cultivars exhibited similar volatility profiles, with alcohols, alkanes, and esters as the major chemical groups, followed by aldehydes, aromatic hydrocarbons, ketones, benzene, and other compounds. Alcohols and aldehydes were quantitatively the two most abundant chemical groups that included the highest number and highest content of compounds. Different cultivars have different aromas, and RCG had high contents of phenyl acetate, rose oxide, trans-rose oxide, phenylethyl alcohol and 1,3,5-trimethoxybenzene, characterized by floral and rose descriptors. RBR contained a high content of phenylethyl alcohol, and RF contained a high content of 3,5-dimethoxytoluene. Hierarchical cluster analysis (HCA) of all volatiles showed that the three cultivars (RCG, RPP, and RF) had similar volatile characteristics and were significantly different from RBR. Differential metabolites among cultivars were screened based on the OPLS-DA model, and there were six main enriched pathways of differential metabolites: biosynthesis of secondary metabolites, monoterpenoid biosynthesis, metabolic pathways, limonene and pinene degradation, sesquiterpenoid and triterpenoid biosynthesis, and alpha-linolenic acid metabolism. The biosynthesis of secondary metabolites is the most differential metabolic pathway.
Collapse
Affiliation(s)
- Wenxuan Quan
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Jing Jin
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
- Guizhou Botanical Garden, Guizhou Academy of Sciences, Guiyang, China
| | - Chenyu Qian
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Chaochan Li
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Hongying Zhou
- Guizhou Botanical Garden, Guizhou Academy of Sciences, Guiyang, China
| |
Collapse
|
7
|
Aghoutane Y, Brebu M, Moufid M, Ionescu R, Bouchikhi B, El Bari N. Detection of Counterfeit Perfumes by Using GC-MS Technique and Electronic Nose System Combined with Chemometric Tools. MICROMACHINES 2023; 14:524. [PMID: 36984931 PMCID: PMC10052770 DOI: 10.3390/mi14030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The Scientific Committee on Cosmetic and Non-Food Products has identified 26 compounds that may cause contact allergy in consumers when present in concentrations above certain legal thresholds in a product. Twenty-four of these compounds are volatiles and can be analyzed by gas chromatography-mass spectrometry (GC-MS) or electronic nose (e-nose) technologies. This manuscript first describes the use of the GC-MS approach to identify the main volatile compounds present in the original perfumes and their counterfeit samples. The second part of this work focusses on the ability of an e-nose system to discriminate between the original fragrances and their counterfeits. The analyses were carried out using the headspace of the aqueous solutions. GC-MS analysis revealed the identification of 10 allergens in the perfume samples, some of which were only found in the imitated fragrances. The e-nose system achieved a fair discrimination between most of the fragrances analyzed, with the counterfeit fragrances being clearly separated from the original perfumes. It is shown that associating the e-nose system to the appropriate classifier successfully solved the classification task. With Principal Component Analysis (PCA), the three first principal components represented 98.09% of the information in the database.
Collapse
Affiliation(s)
- Youssra Aghoutane
- Biosensors and Nanotechnology Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes 50070, Morocco
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes 50070, Morocco
| | - Mihai Brebu
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Mohammed Moufid
- Biosensors and Nanotechnology Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes 50070, Morocco
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes 50070, Morocco
| | - Radu Ionescu
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Benachir Bouchikhi
- Sensor Electronic & Instrumentation Group, Department of Physics, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes 50070, Morocco
| | - Nezha El Bari
- Biosensors and Nanotechnology Group, Department of Biology, Faculty of Sciences, Moulay Ismaïl University of Meknes, B.P. 11201, Zitoune, Meknes 50070, Morocco
| |
Collapse
|