1
|
Li Y, Xu X, Pan Y, Sun Y, Zou G, Li S, Liao S. Tomato sprayed monocalcium phosphate had production-phytoremediation dual function with high soil Cd extraction and safer fruit production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125382. [PMID: 39615575 DOI: 10.1016/j.envpol.2024.125382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/12/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
In order to make use of the large biomass of tomato plant to fulfill the purpose of remediating-while-producing, two commercial tomato varieties, 'Baiguoqiangfeng' (BG) and 'Ouguan' (OG) were grown in Cd contaminated acidic soil to compare their performance on Cd phytoextraction, and monocalcium phosphate (Ca) was foliar applied to reduce their fruit Cd concentration. The results showed that the BG was a more Cd tolerant variety, comparing with OG, it suffered lighter tissue peroxidation and photosynthesis obstacle, owning weaker amino acid metabolism, secondary metabolism and stress signal transduction under Cd stress. The Ca application reduced its ABA level but increased the GSH, IAA, ZR and GA3 level, and enhanced its lysine degradation, tyrosine metabolism, alanine, asparagine and glutamate metabolism, plant hormone signal transduction and phenylpropanoid biosynthesis under Cd stress. With these metabolic regulations, the Ca application promoted its leaf biomass accumulation, guaranteeing the total Cd extraction amount (0.88 mg pot-1 as 0.20 mg kg -1), and reduced the fruit Cd partition, decreasing the fruit Cd concentration by 71.4% with higher yield. Meanwhile, the OG had lower Cd phytoextraction capacity than the BG, and Ca spray enhanced its cell energy generation, flavonoids biosynthesis and photosynthetic carbon fixation, but had no effect on fruit Cd concentration. The two tomato varieties had different responses to Ca application under Cd stress in their hormone signaling, energy metabolism, secondary metabolism and amino acids metabolism, which furtherly differed their Cd phytoextraction capacity and production safety. Therefore, the monocalcium phosphate spray combined 'Baiguoqiangfeng' tomato realized the dual function of production-phytoremediation, and the mechanism of plant Cd sensitivity adjustment through phenylpropanoid biosynthesis and amino acids metabolism deserved further study.
Collapse
Affiliation(s)
- Yanmei Li
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiangnan Xu
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yingjie Pan
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanxin Sun
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shunjiang Li
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shangqiang Liao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
2
|
Maqbool S, Ramzan T, Haider A, Waraich EA, Fatima A, Siddiqui MH, Alamri S, Parveen A, ur Rehman H. Impact of Thiourea on Wheat's Morpho-Physiological and Ionic Attributes ( Triticum aestivum L.) under Lead Stress: Reducing the Translocation of Lead from Soil to Roots, Shoots, and Grains. ACS OMEGA 2025; 10:3054-3066. [PMID: 39895725 PMCID: PMC11780421 DOI: 10.1021/acsomega.4c09941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025]
Abstract
Wheat (Triticum aestivum L.) is a key cereal crop broadly consumed across the earth. Nonetheless, abiotic stressor influences such as toxic metals severely limit its production. Thiourea (TU) is a sulfur-rich organic molecule that reduces the negative effects of environmental stresses such as heavy metals, including lead (Pb). Thus, the ongoing experiment was designed to assess the impact of thiourea amendment through soil (0 and 100 mg/L) on wheat cultivars Akbar 19 (V1) and Ghazi 11 (V2) under lead stress (0 mM and 15 mM Pb). The morphological features of the two cultivars (V1 and V2), comprising the fresh weight of shoots (17 and 23%), fresh weight of roots (31 and 26%), leaf area (22 and 10.9%), and total chlorophyll content (16%), were all decreased due to the toxic effects of stress caused by heavy metals. However, treatment of thiourea through soil allowed counteracting the decrease in biomass caused by heavy metals. It improved the initial weight of the shoots upto (12.5 and 14.2%), roots by (37.5 and 24%), leaf surface area upto (17.6 and 7.9%), and total chlorophyll contents (18 and 9.9%) while decreasing the MDA levels by (16.9 and 22.3%) and the activities of H2O2 upto (16 and 11.5%), root Pb activity upto (8.9 and 35%) and shoot Pb activity by (12.9 and 23.8%), grain concentration upto (25 and 7.56%), soil Pb content were reduced by(17 and 16%), in both varieties (V1 as well as V2). Overall results indicate that treating wheat crops cultivated in pots with external thiourea decreased the damage from oxidation caused by lead and enhanced the antioxidant activity and ionic concentrations. Furthermore, all morpho-physiological parameters exhibited that Ghazi 11 (V2) performed better relative to Akbar 19 (V1). Nevertheless, note that research on wheat by application of thiourea-triggered changes in cultivation under heavy metal stress is still in its earliest stages, requiring more investigation to apply in wide fields.
Collapse
Affiliation(s)
- Sanam Maqbool
- Department
of Botany, University of Agriculture, Faisalabad 38040, Pakistan
| | - Tahrim Ramzan
- Department
of Botany, University of Agriculture, Faisalabad 38040, Pakistan
| | - Arslan Haider
- Department
of Botany, University of Agriculture, Faisalabad 38040, Pakistan
| | - Ejaz Ahmad Waraich
- Department
of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Aleeha Fatima
- Department
of Botany, University of Agriculture, Faisalabad 38040, Pakistan
| | - Manzer H. Siddiqui
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saud Alamri
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abida Parveen
- Department
of Botany, University of Agriculture, Faisalabad 38040, Pakistan
| | - Hafeez ur Rehman
- Department
of Botany, College of Life Sciences, Northwest
A & F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
3
|
Meng X, Cao Y, Lv Y, Wang L, Wang Y. Integrating physiological, metabolome and transcriptome revealed the response of maize seeds to combined cold and high soil moisture stresses. PHYSIOLOGIA PLANTARUM 2025; 177:e70096. [PMID: 39887997 DOI: 10.1111/ppl.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Combined cold and high moisture stress (CHS) is a prevalent abiotic stress during maize sowing in northeast China, severely affecting the growth of seedlings and seed germination. However, the mechanism underlying seed growth responses to CHS remains unclear. We used Jidan441 (JD441, CHS-resistant) and Jidan558 (JD558, CHS-sensitive) as experimental materials. Treatments of 5-day cold (4°C, CS), high moisture (25%, gravimetric water content, HH), and CHS were initiated at sowing, followed by a return to normal growth conditions (20°C during light/ 15°C during dark, 15%) at 7 days after sowing (DAS). CS, HH, and CHS decreased seed root length and surface area. The reduction in root length and surface area in JD441 due to CHS was less severe than in JD558. We found that the difference between CHS and control in JD441was less than that in JD558 at transcriptional and metabolic levels at 7 DAS. After CHS removal, JD441 exhibited a greater increase in α-amylase activity and antioxidant content than JD558, which facilitated starch decomposition and the rapid removal of O2 - and H2O2 in seeds. The rapid recovery of soluble sugar and soluble protein in JD441 helped maintain osmotic balance. Amino acids and genes related to amino acid metabolism were upregulated in response to combined stress in JD441, whereas they were downregulated in JD558. In conclusion, the stress tolerance of JD441 was attributed to its efficient recovery ability from CHS. This study provides a scientific foundation for exploring seed stress tolerance pathways and developing cold and high-moisture-tolerant hybrids.
Collapse
Affiliation(s)
- Xiangzeng Meng
- College of Agronomy, Jilin Agricultural University, Jilin, P. R. China
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin, P. R. China
| | - Yujun Cao
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin, P. R. China
| | - Yanjie Lv
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin, P. R. China
| | - Lichun Wang
- College of Agronomy, Jilin Agricultural University, Jilin, P. R. China
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin, P. R. China
| | - Yongjun Wang
- College of Agronomy, Jilin Agricultural University, Jilin, P. R. China
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin, P. R. China
| |
Collapse
|
4
|
González-Quero M, Aguilar-Garrido A, Paniagua-López M, García-Huertas C, Sierra-Aragón M, Blasco B. Physiological Response of Lettuce ( Lactuca sativa L.) Grown on Technosols Designed for Soil Remediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:3222. [PMID: 39599431 PMCID: PMC11598719 DOI: 10.3390/plants13223222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
This study focuses on the physiological response of lettuce grown on Technosols designed for the remediation of soils polluted by potentially harmful elements (PHEs: As, Cd, Cu, Fe, Pb, and Zn). Lettuce plants were grown in five treatments: recovered (RS) and polluted soil (PS) as controls, and three Technosols (TO, TS, and TV) consisting of 60% PS mixed with 2% iron sludge, 20% marble sludge, and 18% organic wastes (TO: composted olive waste, TS: composted sewage sludge, and TV: vermicompost of garden waste). The main soil properties and PHE solubility were measured, together with physiological parameters related to phytotoxicity in lettuce such as growth, photosynthetic capacity, oxidative stress, and antioxidant defence. All Technosols improved unfavourable conditions of PS (i.e., neutralised acidity and enhanced OC content), leading to a significant decrease in Cd, Cu, and Zn mobility. Nevertheless, TV was the most effective as the reduction in PHEs mobility was higher. Furthermore, lettuce grown on TV and TO showed higher growth (+90% and +41%) than PS, while no increase in TS. However, lower oxidative stress and impact on photosynthetic rate occurred in all Technosols compared to PS (+344% TV, +157% TO, and +194% TS). This physiological response of lettuce proves that PHE phytotoxicity is reduced by Technosols. Thus, this ecotechnology constitutes a potential solution for soil remediation, with effectiveness of Technosols depending largely on its components.
Collapse
Affiliation(s)
- Mateo González-Quero
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.G.-Q.); (C.G.-H.); (B.B.)
| | - Antonio Aguilar-Garrido
- Department of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (M.S.-A.)
| | - Mario Paniagua-López
- Department of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (M.S.-A.)
| | - Carmen García-Huertas
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.G.-Q.); (C.G.-H.); (B.B.)
| | - Manuel Sierra-Aragón
- Department of Soil Science and Agricultural Chemistry, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.P.-L.); (M.S.-A.)
| | - Begoña Blasco
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Av. de Fuente Nueva s/n, 18071 Granada, Spain; (M.G.-Q.); (C.G.-H.); (B.B.)
| |
Collapse
|
5
|
Zhang X, Li M, Ma X, Jin X, Wu X, Zhang H, Guan Z, Fu Z, Chen S, Wang P. Transcriptomics Combined with Physiology and Metabolomics Reveals the Mechanism of Tolerance to Lead Toxicity in Maize Seedling. PHYSIOLOGIA PLANTARUM 2024; 176:e14547. [PMID: 39327540 DOI: 10.1111/ppl.14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024]
Abstract
Lead (Pb) exposure can induce molecular changes in plants, disrupt metabolites, and impact plant growth. Therefore, it is essential to comprehend the molecular mechanisms involved in Pb tolerance in plants to evaluate the long-term environmental consequences of Pb exposure. This research focused on maize as the test subject to study variations in biomass, root traits, genes, and metabolites under hydroponic conditions under Pb conditions. The findings indicate that high Pb stress significantly disrupts plant growth and development, leading to a reduction in catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) activities by 17.12, 5.78, and 19.38%, respectively. Conversely, Pb stress led to increase malondialdehyde (MDA) contents, ultimately impacting the growth of maize. The non-targeted metabolomics analysis identified 393 metabolites categorized into 12 groups, primarily consisting of organic acids and derivatives, organ heterocyclic compounds, lipids and lipid-like molecules and benzenoids. Further analysis indicated that Pb stress induced an accumulation of 174 metabolites mainly enriched in seven metabolic pathways, for example phenylpropanoid biosynthesis and flavonoid biosynthesis. Transcriptome analysis revealed 1933 shared differentially expressed genes (DEGs), with 1356 upregulated and 577 downregulated genes across all Pb treatments. Additionally, an integrated analysis identified several DEGs and differentially accumulated metabolites (DAMs), including peroxidase, alpha-trehalose, and D-glucose 6-phosphate, which were linked to cell wall biosynthesis. These findings imply the significance of this pathway in Pb detoxification. This comprehensive investigation, employing multiple methodologies, provides a detailed molecular-level insight into maize's response to Pb stress.
Collapse
Affiliation(s)
- Xiaoxiang Zhang
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Min Li
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Xingye Ma
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Xining Jin
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Xiangyuan Wu
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Huaisheng Zhang
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Zhongrong Guan
- Chongqing Yudongnan Academy of Agricultural Sciences, Chongqing, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, China
| | - Shilin Chen
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Pingxi Wang
- School of Agriculture, Henan Institute of Science and Technology, China
| |
Collapse
|
6
|
Chen S, Zhou Q, Feng Y, Dong Y, Zhang Z, Wang Y, Liu W. Responsive mechanism of Hemerocallis citrina Baroni to complex saline-alkali stress revealed by photosynthetic characteristics and antioxidant regulation. PLANT CELL REPORTS 2024; 43:176. [PMID: 38896259 DOI: 10.1007/s00299-024-03261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
KEY MESSAGE Saline-alkali stress induces oxidative damage and photosynthesis inhibition in H. citrina, with a significant downregulation of the expression of photosynthesis- and antioxidant-related genes at high concentration. Soil salinization is a severe abiotic stress that impacts the growth and development of plants. In this study, Hemerocallis citrina Baroni was used to investigate its responsive mechanism to complex saline-alkali stress (NaCl:Na2SO4:NaHCO3:Na2CO3 = 1:9:9:1) for the first time. The growth phenotype, photoprotective mechanism, and antioxidant system of H. citrina were studied combining physiological and transcriptomic techniques. KEGG enrichment and GO analyses revealed significant enrichments of genes related to photosynthesis, chlorophyll degradation and antioxidant enzyme activities, respectively. Moreover, weighted gene co-expression network analysis (WGCNA) found that saline-alkali stress remarkably affected the photosynthetic characteristics and antioxidant system. A total of 29 key genes related to photosynthesis and 29 key genes related to antioxidant enzymes were discovered. High-concentration (250 mmol L-1) stress notably inhibited the expression levels of genes related to light-harvesting complex proteins, photosystem reaction center activity, electron transfer, chlorophyll synthesis, and Calvin cycle in H. citrina leaves. However, most of them were insignificantly changed under low-concentration (100 mmol L-1) stress. In addition, H. citrina leaves under saline-alkali stress exhibited yellow-brown necrotic spots, increased cell membrane permeability and accumulation of reactive oxygen species (ROS) as well as osmolytes. Under 100 mmol L-1 stress, ROS was eliminate by enhancing the activities of antioxidant enzymes. Nevertheless, 250 mmol L-1 stress down-regulated the expression levels of genes encoding antioxidant enzymes, and key enzymes in ascorbate-glutathione (AsA-GSH) cycle as well as thioredoxin-peroxiredoxin (Trx-Prx) pathway, thus inhibiting the activities of these enzymes. In conclusion, 250 mmol L-1 saline-alkali stress caused severe damage to H. citrina mainly by inhibiting photosynthesis and ROS scavenging capacity.
Collapse
Affiliation(s)
- Shuo Chen
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Qiuxue Zhou
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yuwei Feng
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yanjun Dong
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Zixuan Zhang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Wang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Wei Liu
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
7
|
Kaya C, Akin S, Sarioğlu A, Ashraf M, Alyemeni MN, Ahmad P. Enhancement of soybean tolerance to water stress through regulation of nitrogen and antioxidant defence mechanisms mediated by the synergistic role of salicylic acid and thiourea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108320. [PMID: 38183901 DOI: 10.1016/j.plaphy.2023.108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/10/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Water stress (WS) poses a significant threat to global food and energy security by adversely affecting soybean growth and nitrogen metabolism. This study explores the synergistic effects of exogenous salicylic acid (SA, 0.5 mM) and thiourea (TU, 400 mg L-1), potent plant growth regulators, on soybean responses under WS conditions. The treatments involved foliar spraying for 3 days before inducing WS by reducing soil moisture to 50% of field capacity, followed by 2 weeks of cultivation under normal or WS conditions. WS significantly reduced plant biomass, chlorophyll content, photosynthetic efficiency, water status, protein content, and total nitrogen content in roots and leaves. Concurrently, it elevated levels of leaf malondialdehyde, H2O2, proline, nitrate, and ammonium. WS also triggered an increase in antioxidant enzyme activity and osmolyte accumulation in soybean plants. Application of SA and TU enhanced the activities of key enzymes crucial for nitrogen assimilation and amino acid synthesis. Moreover, SA and TU improved plant growth, water status, chlorophyll content, photosynthetic efficiency, protein content, and total nitrogen content, while reducing oxidative stress and leaf proline levels. Indeed, the simultaneous application of SA and TU demonstrated a heightened impact compared to their separate use, suggesting a synergistic interaction. This study underscores the potential of SA and TU to enhance WS tolerance in soybean plants by modulating nitrogen metabolism and mitigating oxidative damage. These findings hold significant promise for improving crop productivity and quality in the face of escalating water limitations due to climate change.
Collapse
Affiliation(s)
- Cengiz Kaya
- Harran University, Department of Soil Science and Plant Nutrition, Sanliurfa, Turkey.
| | - Sabri Akin
- Harran University, Department of Agricultural Structures and Irrigation, Sanliurfa, Turkey
| | - Ali Sarioğlu
- Harran University, Department of Soil Science and Plant Nutrition, Sanliurfa, Turkey
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| | | | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
8
|
Ugurlar F, Kaya C. Synergistic mitigation of nickel toxicity in pepper ( Capsicum annuum) by nitric oxide and thiourea via regulation of nitrogen metabolism and subcellular nickel distribution. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:1099-1116. [PMID: 37875021 DOI: 10.1071/fp23122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
Nickel (Ni) contamination hinders plant growth and yield. Nitric oxide (NO) and thiourea (Thi) aid plant recovery from heavy metal damage, but their combined effects on pepper (Capsicum annuum ) plant tolerance to Ni stress need more study. Sodium nitroprusside (0.1mM, SNP) and 400mgL-1 Thi, alone and combined, were studied for their impact on pepper growth under Ni toxicity. Ni stress reduces chlorophyll, PSII efficiency and leaf water and sugar content. However, SNP and Thi alleviate these effects by increasing leaf water, proline and sugar content. It also increased the activities of superoxide dismutase, catalase, ascorbate peroxidase and peroxidase. Nickel stress lowered nitrogen assimilation enzymes (nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase and glutamate dehydrogenase) and protein content, but increased nitrate, ammonium and amino acid content. SNP and Thi enhanced nitrogen assimilation, increased protein content and improved pepper plant growth and physiological functions during Ni stress. The combined treatment reduced Ni accumulation, increased Ni in leaf cell walls and potentially in root vacuoles, and decreased Ni concentration in cell organelles. It effectively mitigated Ni toxicity to vital organelles, surpassing the effects of SNP or Thi use alone. This study provides valuable insights for addressing heavy metal contamination in agricultural soils and offers potential strategies for sustainable and eco-friendly farming practices.
Collapse
Affiliation(s)
- Ferhat Ugurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| |
Collapse
|
9
|
Huang S, Deng Q, Zhao Y, Chen G, Geng A, Wang X. l-Glutamate Seed Priming Enhances 2-Acetyl-1-pyrroline Formation in Fragrant Rice Seedlings in Response to Arsenite Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18443-18453. [PMID: 37975831 DOI: 10.1021/acs.jafc.3c06369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
2-Acetyl-1-pyrroline (2-AP) is a fragrance compound and flavor in fragrant rice whose precursors are generally glutamate (Glu) and proline (Pro). Our previous study revealed that exogenous Glu enhanced the arsenic (As) tolerance in fragrant rice by improving the ascorbic acid-glutathione cycle and the Pro content in roots. However, less is known about how Glu is involved in 2-AP biosynthesis in fragrant rice under As stress. Herein, a hydroponic experiment of L-Glu seed priming with 0, 100, and 500 μM l-glutamic acid solutions was conducted with two fragrant rice varieties. After that, the 10-day-old seedlings were cultured under 0 and 100 μM arsenite stress for 10 d. Results showed that the 2-AP and Pro contents were increased by 18-30% and 21-78% under As100 μM-Glu100 μM treatment in comparison to the control As100 μM to Glu0 μM, while the activities of pyrroline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (ProDH) were increased by 19-46% and 3-19%, respectively. Furthermore, the 2-AP, Pro contents, and P5CS activity were correlated positively. Correspondingly, a significant abundance of differential expressed metabolites (18) and differential expressed genes (26) was observed in amino acid metabolism and glutathione metabolism pathways. In addition, several essential genes were verified and grouped into the pathways of glutathione metabolism, proline, and arginine metabolism with antioxidant defense system to comodulate 2-AP biosynthesis and stress detoxification. Therefore, the Glu seed priming treatment had a positive impact on the 2-AP biosynthesis of fragrant rice under 100 μM arsenite toxicity.
Collapse
Affiliation(s)
- Suihua Huang
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality and Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Quanqing Deng
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yarong Zhao
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality and Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality and Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality and Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality and Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
10
|
Hanife S, Namdjoyan S, Kermanian H. Synergistic effects of exogenous glutathione and calcium on ascorbate-glutathione cycle and glutathione-associated enzymes upregulation under lead stress in Brassica napus L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108979-108991. [PMID: 37759048 DOI: 10.1007/s11356-023-30000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Heavy metals (HMs) such as lead (Pb) pose a significant threat to global food security due to their adverse effect on the health of crop plants. Calcium (Ca) and Glutathione (GSH) are signaling molecules to scavenge free radicals in HM-stressed plants. In this study, GSH and Ca's role is examined in supporting canola seedlings against Pb toxicity. In a pot experiment, the administration of Glutathione (GSH, 0 and 100 µM) and/or calcium (CaCl2, 0 and 500 µM) in canola seedlings was examined under lead stress (0 and 100 µM of Pb(NO3)2. Compared with the control samples, Pb treatment increased MDA and H2O2 values by 61 and 53%, respectively, indicative of oxidative burst. However, using a combination of GSH and Ca lowered oxidative stress in Pb-stressed plants by an approximately twofold reduction in MDA and H2O2 content. Total PC content increased by 78% in Pb-stressed plants, suggesting that these chelating peptides diminish the damaging effects of Pb. Interestingly, further boosts in total PC levels were recorded in Pb-stressed plants treated with GSH and Ca concurrently. The addition of exogenous GSH and Ca to Pb-stressed canola plants limited Pb uptake and translocation and improved ascorbate-glutathione cycle performance. Moreover, compared to their separate usage, the co-treatment of exogenous GSH and Ca strengthened the GSH pool by increasing the activities of enzymes involved in GSH metabolism. The findings demonstrate that exogenous GSH and Ca modulate GSH synthesis, metabolism, and redox homeostasis synergistically to enhance resistance to oxidative stress generated by Pb.
Collapse
Affiliation(s)
- Shima Hanife
- Department of Biology and Biochemistry, Science Faculty, Shahr-E-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Shahram Namdjoyan
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Hossein Kermanian
- Department of Biorefinery Engineering, Faculty of New Technologies and Engineering, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
11
|
Zhao X, Lin G, Liu T, Zhang X, Xu Y. Comparative Analysis of Metabolic Compositions and Trace Elements of Ornithogalum caudatum with Different Growth Years. ACS OMEGA 2023; 8:23889-23900. [PMID: 37426248 PMCID: PMC10324082 DOI: 10.1021/acsomega.3c02310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
As a traditional medicine with extensive history, Ornithogalum caudatum has high nutritional and medicinal value. However, its quality evaluation criteria are insufficient because it is not included in the pharmacopeia. Simultaneously, it is a perennial plant, and the medicinal ingredients change with the growth years. Currently, studies on the synthesis and accumulation of metabolites and elements in O. caudatum during different growth years are unavailable. To address this issue, in this study, the 8 main active substances, metabolism profiles, and 12 trace elements of O. caudatum from different growth years (1, 3, and 5 years old) were analyzed. The main substances of O. caudatum changed significantly in different years of growth. Saponin and sterol contents increased with age; however, the polysaccharide content decreased. For metabolism profiling, ultrahigh-performance liquid chromatography tandem mass spectrometry was performed. Among the three groups, 156 differential metabolites with variable importance in projection values >1.0 and p < 0.05 were identified. Among the differential metabolites, 16 increased with increasing years of growth and have the potential to become age-identified markers. A trace element study showed that the contents of K, Ca, and Mg were higher, and the ratio of Zn/Cu was less than 0.1%. Heavy metal ions in O. caudatum did not increase with age. The results of this study provide a basis to evaluate the edible values of O. caudatum and facilitate further exploitation.
Collapse
Affiliation(s)
- Xueliang Zhao
- Key
Laboratory for Metabolic Regulation and Activity Research of Medicinal
Plants, Baicheng Medical College, Baicheng, Jilin 137000, China
- College
of Life Sciences, Baicheng Normal University, Baicheng, Jilin 137000, China
| | - Guangyu Lin
- Animal
Husbandry Information Center, Changchun, Jilin 130000, China
- Jilin
Agricultural University, Changchun, Jilin 130018, China
| | - Tong Liu
- Key
Laboratory for Metabolic Regulation and Activity Research of Medicinal
Plants, Baicheng Medical College, Baicheng, Jilin 137000, China
- College
of Life Sciences, Baicheng Normal University, Baicheng, Jilin 137000, China
| | - Xue Zhang
- Key
Laboratory for Metabolic Regulation and Activity Research of Medicinal
Plants, Baicheng Medical College, Baicheng, Jilin 137000, China
- College
of Life Sciences, Baicheng Normal University, Baicheng, Jilin 137000, China
| | - Yang Xu
- Key
Laboratory for Metabolic Regulation and Activity Research of Medicinal
Plants, Baicheng Medical College, Baicheng, Jilin 137000, China
- College
of Life Sciences, Baicheng Normal University, Baicheng, Jilin 137000, China
| |
Collapse
|
12
|
Liu H, Su Y, Fan Y, Zuo D, Xu J, Liu Y, Mei X, Huang H, Yang M, Zhu S. Exogenous leucine alleviates heat stress and improves saponin synthesis in Panax notoginseng by improving antioxidant capacity and maintaining metabolic homeostasis. FRONTIERS IN PLANT SCIENCE 2023; 14:1175878. [PMID: 37152124 PMCID: PMC10154563 DOI: 10.3389/fpls.2023.1175878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Panax notoginseng saponins (PNSs) are used as industrial raw materials to produce many drugs to treat cardio-cerebrovascular diseases. However, it is a heat-sensitive plant, and its large-scale artificial cultivation is impeded by high temperature stress, leading to decreases in productivity and PNSs yield. Here, we examined exogenous foliar leucine to alleviate heat stress and explored the underlying mechanism using metabolomics. The results indicated that 3 and 5 mM exogenous foliar leucine significantly alleviated heat stress in one-year- and two-year-old P. notoginseng in pots and field trials. Exogenous foliar leucine enhanced the antioxidant capacity by increasing the activities of antioxidant enzymes (POD, SOD) and the contents of antioxidant metabolites (amino acids). Moreover, exogenous foliar leucine enhanced carbohydrate metabolism, including sugars (sucrose, maltose) and TCA cycle metabolites (citric acid, aconitic acid, succinic acid and fumaric acid), in P. notoginseng leaves, stems, and fibrous roots to improve the energy supply of plants and further alleviate heat stress. Field experiments further verified that exogenous foliar leucine increased the productivity and PNSs accumulation in P. notoginseng. These results suggest that leucine application is beneficial for improving the growth and quality of P. notoginseng under heat stress. It is therefore possible to develop plant growth regulators based on leucine to improve the heat resistance of P. notoginseng and other crops.
Collapse
Affiliation(s)
- Haijiao Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yingwei Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yunxia Fan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Denghong Zuo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jie Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Shusheng Zhu, ; Min Yang,
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
- *Correspondence: Shusheng Zhu, ; Min Yang,
| |
Collapse
|