1
|
Ullah J, Gul A, Khan I, Shehzad J, Kausar R, Ahmed MS, Batool S, Hasan M, Ghorbanpour M, Mustafa G. Green synthesized iron oxide nanoparticles as a potential regulator of callus growth, plant physiology, antioxidative and microbial contamination in Oryza sativa L. BMC PLANT BIOLOGY 2024; 24:939. [PMID: 39385076 PMCID: PMC11462915 DOI: 10.1186/s12870-024-05627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
In tissue culture, efficient nutrient availability and effective control of callus contamination are crucial for successful plantlet regeneration. This study was aimed to enhance callogenesis, callus regeneration, control callus contamination, and substitute iron (Fe) source with FeO-NPs in Murashige and Skoog (MS) media. Nanogreen iron oxide (FeO-NPs) were synthesized and well characterized with sizes ranging from 2 to 7.5 nm. FeO-NPs as a supplement in MS media at 15 ppm, significantly controlled callus contamination by (80%). Results indicated that FeCl3-based FeO-NPs induced fast callus induction (72%) and regeneration (43%), in contrast FeSO4-based FeO-NPs resulted in increased callus weight (516%), diameter (300%), number of shoots (200%), and roots (114%). Modified media with FeO-NPs as the Fe source induced fast callogenesis and regeneration compared to normal MS media. FeO-NPs, when applied foliar spray, increased Plant fresh biomass by 133% and spike weight by 350%. Plant height increased by 54% and 33%, the number of spikes by 50% and 265%, and Chlorophyll content by 51% and 34% in IRRI-6 and Kissan Basmati, respectively. Additionally, APX (Ascorbate peroxidase), SOD (Superoxide dismutase), POD (peroxidase), and CAT (catalase) increased in IRRI-6 by 27%, 29%, 283%, 62%, while in Kissan Basmati, APX increased by 70%, SOD decreased by 28%, and POD and CAT increased by 89% and 98%, respectively. Finally, FeO-NPs effectively substituted Fe source in MS media, shorten the plant life cycle, and increase chlorophyll content as well as APX, SOD, POD, and CAT activities. This protocol is applicable for tissue culture in other cereal crops as well.
Collapse
Affiliation(s)
- Jawad Ullah
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Afia Gul
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ilham Khan
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Junaid Shehzad
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rehana Kausar
- Department of Botany, Chatter Klass Campus, University of Azad Jammu & Kashmir, Muzaffarabad, 13100, Pakistan
| | - Muhammad Shahzad Ahmed
- Rice Research Program, Crop Sciences Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan.
| | - Sana Batool
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Murtaza Hasan
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran.
| | - Ghazala Mustafa
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Department of Horticulture, State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Chen Y, Cui B, Dou Y, Fan H, Fang Y, Wang L, Duan Z. Characteristics of biofilms on polylactic acid microplastics and their inhibitory effects on the growth of rice seedlings: A comparative study of petroleum-based microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135469. [PMID: 39173375 DOI: 10.1016/j.jhazmat.2024.135469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/05/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Increasing evidence highlights the negative effects of microplastics (MPs) on crops and bio-based plastics offer an alternative to conventional plastics. However, there is limited knowledge on the impacts and mechanisms of bio-based MPs on crop physiology. In this study, bio-based polylactic acid (PLA) and petroleum-based MPs [polyamide (PA) and polypropylene (PP)] were added to hydroponic cultures planted with rice (Oryza sativa L.) seedlings to assess their toxicity. Compared to PA and PP MPs, PLA MPs experienced greater aging after 28 days of exposure, and their surfaces were loaded with more rod-shaped microorganisms with potential plastic degradation ability, such as Proteobacteria and Bacteroidota, which competed with rice seedlings for carbon and nitrogen sources for self-multiplication, thus altering the carbon fixation and nitrogen cycling processes during rice seedling growth. Down-regulation of amino acid and lipid metabolisms in the PLA treatment inhibited the normal synthesis of chlorophyll in rice seedling leaves. Consequently, decreases in the biomass and height of rice seedling roots and shoots were observed in the PLA MP treatment. This study provides evidence that bio-based MPs may have a more severe impact on crop growth than petroleum-based MPs.
Collapse
Affiliation(s)
- Yizhuo Chen
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Bo Cui
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Yuhang Dou
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Huiyu Fan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yanjun Fang
- Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
3
|
Mustafa G, Chaudhari SK, Manzoor M, Batool S, Hatami M, Hasan M. Zinc oxide nanoparticles mediated salinity stress mitigation in Pisum sativum: a physio-biochemical perspective. BMC PLANT BIOLOGY 2024; 24:835. [PMID: 39243061 PMCID: PMC11378595 DOI: 10.1186/s12870-024-05554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Salinity is the major abiotic stress among others that determines crop productivity. The primary goal is to examine the impact of Zinc Oxide Nanoparticles (ZnO NPs) on the growth, metabolism, and defense systems of pea plants in simulated stress conditions. The ZnO NPs were synthesized via a chemical process and characterized by UV, XRD, and SEM. The ZnO NPs application (50 and 100) ppm and salt (50 mM and 100 mM) concentrations were carried out individually and in combination. At 50 ppm ZnO NPs the results revealed both positive and negative effects, demonstrating an increase in the root length and other growth parameters, along with a decrease in Malondialdehyde (MDA) and hydrogen peroxide concentrations. However, different concentrations of salt (50 mM and 100 mM) had an overall negative impact on all assessed parameters. In exploring the combined effects of ZnO NPs and salt, various concentrations yielded different outcomes. Significantly, only 50 mM NaCl combined with 50 ppm ZnO NPs demonstrated positive effects on pea physiology, leading to a substantial increase in root length and improvement in other physiological parameters. Moreover, this treatment resulted in decreased levels of MAD, Glycine betaine, and hydrogen peroxide. Conversely, all other treatments exhibited negative effects on the assessed parameters, possibly due to the high concentrations of both stressors. The findings offered valuble reference data for research on the impact of salinity on growth parameters of future agriculture crop.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sunbal Khalil Chaudhari
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha, 42100, Pakistan
| | - Madiha Manzoor
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha, 42100, Pakistan
| | - Sana Batool
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Murtaza Hasan
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
4
|
Solanki B, Saleem S, Khan MS. Amelioration of phytotoxic impact of biosynthesized zinc oxide nanoparticles: Plant growth promoting rhizobacteria facilitates the growth and biochemical responses of Eggplant (Solanum melongena) under nanoparticles stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108678. [PMID: 38714126 DOI: 10.1016/j.plaphy.2024.108678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/15/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
The consistently increasing use of zinc oxide nanoparticles (ZnONPs) in crop optimization practices and their persistence in agro-environment necessitate expounding their influence on sustainable agro-environment. Attempts have been made to understand nanoparticle-plant beneficial bacteria (PBB)- plant interactions; the knowledge of toxic impact of nanomaterials on soil-PBB-vegetable systems and alleviating nanotoxicity using PBB is scarce and inconsistent. This study aims at bio-fabrication of ZnONPs from Rosa indica petal extracts and investigates the impact of PBB on growth and biochemical responses of biofertilized eggplants exposed to phyto-synthesized nano-ZnO. Microscopic and spectroscopic techniques revealed nanostructure, triangular shape, size 32.5 nm, and different functional groups of ZnONPs and petal extracts. Inoculation of Pseudomonas fluorescens and Azotobacter chroococcum improved germination efficiency by 22% and 18% and vegetative growth of eggplants by 14% and 15% under NPs stress. Bio-inoculation enhanced total chlorophyll content by 36% and 14 %, increasing further with higher ZnONP concentrations. Superoxide dismutase and catalase activity in nano-ZnO and P. fluorescens inoculated eggplant shoots reduced by 15-23% and 9-11%. Moreover, in situ experiment unveiled distortion and accumulation of NPs in roots revealed by scanning electron microscope and confocal laser microscope. The present study highlights the phytotoxicity of biosynthesized ZnONPs to eggplants and demonstrates that PBB improved agronomic traits of eggplants while declining phytochemicals and antioxidant levels. These findings suggest that P. fluorescens and A. chroococcum, with NPs ameliorative activity, can be cost-effective and environment-friendly strategy for alleviating NPs toxicity and promoting eggplant production under abiotic stress, fulfilling vegetable demands.
Collapse
Affiliation(s)
- Bushra Solanki
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Samia Saleem
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
5
|
Adeel M, Ahmad MA, Zhang P, Rizwan M, Rui Y. Editorial to special issue on New Avenues in application of nanotechnology for sustainable. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108432. [PMID: 38402075 DOI: 10.1016/j.plaphy.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Affiliation(s)
- Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China; Normal University at Zhuhai, Zhuhai, 519087, Guangdong, China.
| | - Muhammad Arslan Ahmad
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Muhammad Rizwan
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, 2713, Doha, Qatar
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Channab BE, El Idrissi A, Ammar A, Dardari O, Marrane SE, El Gharrak A, Akil A, Essemlali Y, Zahouily M. Recent advances in nano-fertilizers: synthesis, crop yield impact, and economic analysis. NANOSCALE 2024; 16:4484-4513. [PMID: 38314867 DOI: 10.1039/d3nr05012b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The escalating global demand for food production has predominantly relied on the extensive application of conventional fertilizers (CFs). However, the increased use of CFs has raised concerns regarding environmental risks, including soil and water contamination, especially within cereal-based cropping systems. In response, the agricultural sector has witnessed the emergence of healthier alternatives by utilizing nanotechnology and nano-fertilizers (NFs). These innovative NFs harness the remarkable properties of nanoparticles, ranging in size from 1 to 100 nm, such as nanoclays and zeolites, to enhance nutrient utilization efficiency. Unlike their conventional counterparts, NFs offer many advantages, including variable solubility, consistent and effective performance, controlled release mechanisms, enhanced targeted activity, reduced eco-toxicity, and straightforward and safe delivery and disposal methods. By facilitating rapid and complete plant absorption, NFs effectively conserve nutrients that would otherwise go to waste, mitigating potential environmental harm. Moreover, their superior formulations enable more efficient promotion of sustainable crop growth and production than conventional fertilizers. This review comprehensively examines the global utilization of NFs, emphasizing their immense potential in maintaining environmentally friendly crop output while ensuring agricultural sustainability.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Ayyoub Ammar
- Laboratory of Virology, Oncology, Biosciences, Environment and New Energies, Faculty of Sciences and Techniques Mohammedia, University Hassan II of Casablanca, Casablanca B.P. 146, Morocco.
| | - Othmane Dardari
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Salah Eddine Marrane
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Abdelouahed El Gharrak
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
| | - Adil Akil
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco.
- Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Youness Essemlali
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco.
- Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca B.P. 146, Morocco.
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco.
- Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
7
|
Thiruvengadam M, Chi HY, Kim SH. Impact of nanopollution on plant growth, photosynthesis, toxicity, and metabolism in the agricultural sector: An updated review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108370. [PMID: 38271861 DOI: 10.1016/j.plaphy.2024.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Nanotechnology provides distinct benefits to numerous industrial and commercial fields, and has developed into a discipline of intense interest to researchers. Nanoparticles (NPs) have risen to prominence in modern agriculture due to their use in agrochemicals, nanofertilizers, and nanoremediation. However, their potential negative impacts on soil and water ecosystems, as well as plant growth and physiology, have caused concern for researchers and policymakers. Concerns have been expressed regarding the ecological consequences and toxicity effects associated with nanoparticles as a result of their increased production and usage. Moreover, the accumulation of nanoparticles in the environment poses a risk, not only because of the possibility of plant damage but also because nanoparticles may infiltrate the food chain. In this review, we have documented the beneficial and detrimental effects of NPs on seed germination, shoot and root growth, plant biomass, and nutrient assimilation. Nanoparticles exert toxic effects by inducing ROS generation and stimulating cytotoxic and genotoxic effects, thereby leading to cell death in several plant species. We have provided possible mechanisms by which nanoparticles induce toxicity in plants. In addition to the toxic effects of NPs, we highlighted the importance of nanomaterials in the agricultural sector. Thus, understanding the structure, size, and concentration of nanoparticles that will improve plant growth or induce plant cell death is essential. This updated review reveals the multifaceted connection between nanoparticles, soil and water pollution, and plant biology in the context of agriculture.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
8
|
Zúñiga-Miranda J, Guerra J, Mueller A, Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Heredia-Moya J, Guamán LP. Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2919. [PMID: 37999273 PMCID: PMC10674528 DOI: 10.3390/nano13222919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
The rise of antimicrobial resistance caused by inappropriate use of these agents in various settings has become a global health threat. Nanotechnology offers the potential for the synthesis of nanoparticles (NPs) with antimicrobial activity, such as iron oxide nanoparticles (IONPs). The use of IONPs is a promising way to overcome antimicrobial resistance or pathogenicity because of their ability to interact with several biological molecules and to inhibit microbial growth. In this review, we outline the pivotal findings over the past decade concerning methods for the green synthesis of IONPs using bacteria, fungi, plants, and organic waste. Subsequently, we delve into the primary challenges encountered in green synthesis utilizing diverse organisms and organic materials. Furthermore, we compile the most common methods employed for the characterization of these IONPs. To conclude, we highlight the applications of these IONPs as promising antibacterial, antifungal, antiparasitic, and antiviral agents.
Collapse
Affiliation(s)
- Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Julio Guerra
- Facultad de Ingeniería en Ciencias Aplicadas, Universidad Técnica del Norte, Ibarra 100107, Ecuador;
| | - Alexander Mueller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| |
Collapse
|
9
|
Geethamala GV, Poonkothai M, Swathilakshmi AV. Assessment on the photocatalytic and phytotoxic activities using ecobenevolently synthesized iron oxide nanoparticles from the root extracts of Glycyrrhiza glabra. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117022-117036. [PMID: 37221292 DOI: 10.1007/s11356-023-27551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
The present study is the first attempt to utilize the root extracts of Glycyrrhiza glabra as a novel biological route for the synthesis of iron oxide nanoparticles (Fe2O3NPs) under optimized conditions. The process variables namely concentration of ferric chloride, root extract of G. glabra and temperature were optimized using Response Surface Methodology (RSM) to obtain high yield. Phytochemicals mediated the reduction process and served as capping and stabilizing agent. The biosynthesized Fe2O3NPs characterized using UV-Vis spectroscopy exhibited a prominent peak at 350 nm. The crystallinity and valence state of Fe2O3NPs was confirmed by XRD and XPS. The surface functionalization of the nanoparticles was confirmed from the presence of functional groups in the FT-IR spectrum. The FESEM analysis revealed the biosynthesized Fe2O3NPs are irregular and the EDX spectrum recorded the presence of iron and oxygen in the synthesized nanoparticles. The biosynthesized Fe2O3NPs exhibited an appreciable photocatalytic activity against methylene blue under sunlight with a maximum decolorisation efficiency of 92% within 180 min of reaction time. The experimental data of adsorption studies well fitted with Langmuir isotherm and pseudo-second order kinetic model. The thermodynamic study proved to be spontaneous, feasible and endothermic in nature. The phytotoxicity study revealed 92% germination and increased seedling growth in the green gram seeds exposed to Fe2O3NPs. Hence the study established the efficiency of biosynthesized of Fe2O3NPs in photocatalytic and phytotoxic activities.
Collapse
Affiliation(s)
- Gunaseelan Vivekananth Geethamala
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Mani Poonkothai
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India.
| | - Ammapettai Varanavasu Swathilakshmi
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| |
Collapse
|
10
|
Bionanotechnology in Agriculture: A One Health Approach. Life (Basel) 2023; 13:life13020509. [PMID: 36836866 PMCID: PMC9964896 DOI: 10.3390/life13020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Healthy eating habits are one of the requirements for the health of society. In particular, in natura foods are increasingly encouraged, since they have a high concentration of nutrients. However, these foods are often grown in the presence of agrochemicals, such as fertilizers and pesticides. To increase crop productivity and achieve high vigor standards in less time, farmers make excessive use of agrochemicals that generate various economic, environmental, and clinical problems. In this way, bionanotechnology appears as an ally in developing technologies to improve planting conditions, ranging from the health of farmers and consumers to the production of new foods and functional foods. All these improvements are based on the better use of land use in synergy with the lowest generation of environmental impacts and the health of living beings, with a view to the study and production of technologies that take into account the concept of One Health in its processes and products. In this review article, we will address how caring for agriculture can directly influence the quality of the most desired foods in contemporary society, and how new alternatives based on nanotechnology can point to efficient and safe solutions for living beings on our planet.
Collapse
|