1
|
Nakhforoosh A, Hallin E, Karunakaran C, Korbas M, Stobbs J, Kochian L. Visualization and Quantitative Evaluation of Functional Structures of Soybean Root Nodules via Synchrotron X-ray Imaging. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0203. [PMID: 39021394 PMCID: PMC11254386 DOI: 10.34133/plantphenomics.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/26/2024] [Indexed: 07/20/2024]
Abstract
The efficiency of N2-fixation in legume-rhizobia symbiosis is a function of root nodule activity. Nodules consist of 2 functionally important tissues: (a) a central infected zone (CIZ), colonized by rhizobia bacteria, which serves as the site of N2-fixation, and (b) vascular bundles (VBs), serving as conduits for the transport of water, nutrients, and fixed nitrogen compounds between the nodules and plant. A quantitative evaluation of these tissues is essential to unravel their functional importance in N2-fixation. Employing synchrotron-based x-ray microcomputed tomography (SR-μCT) at submicron resolutions, we obtained high-quality tomograms of fresh soybean root nodules in a non-invasive manner. A semi-automated segmentation algorithm was employed to generate 3-dimensional (3D) models of the internal root nodule structure of the CIZ and VBs, and their volumes were quantified based on the reconstructed 3D structures. Furthermore, synchrotron x-ray fluorescence imaging revealed a distinctive localization of Fe within CIZ tissue and Zn within VBs, allowing for their visualization in 2 dimensions. This study represents a pioneer application of the SR-μCT technique for volumetric quantification of CIZ and VB tissues in fresh, intact soybean root nodules. The proposed methods enable the exploitation of root nodule's anatomical features as novel traits in breeding, aiming to enhance N2-fixation through improved root nodule activity.
Collapse
Affiliation(s)
| | - Emil Hallin
- Global Institute for Food Security, Saskatoon, SK S7N 4L8, Canada
| | | | | | - Jarvis Stobbs
- Canadian Light Source Inc., Saskatoon, SK S7N 2V3, Canada
| | - Leon Kochian
- Global Institute for Food Security, Saskatoon, SK S7N 4L8, Canada
| |
Collapse
|
2
|
Zhang D, Wang H, Zhang Y, Su Z, Hu T, Liu J, Ding Q, Niu N, Ma L. Methyl jasmonate enhances the safe production ability of Cd-stressed wheat by regulating the antioxidant capacity, Cd absorption, and distribution in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108788. [PMID: 38830276 DOI: 10.1016/j.plaphy.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Identifying green and effective measures for reducing wheat Cd toxicity and grain Cd accumulation is crucial. This study used seedling sand culture and full-grown pot experiments of wheat cultivars 'Luomai23' (LM) and 'Zhongyu10' (ZY). The purpose was to determine the effects of exogenous MeJA on the phenotype, photosynthesis, antioxidant system, Cd accumulation and distribution, transporter gene expression, and cell wall properties of Cd-stressed wheat. Compared with Cd treatment alone, the plant height and maximum root length treated with 0.001 μM MeJA increased by more than 6.3% and 16.6%, respectively. Under 5 mg⋅kg-1 Cd treatment, spraying 10 μM MeJA increased the photosynthetic rate of LM and ZY by 23.5% and 35.8% at the filling stage, respectively. Methyl jasmonate significantly reduced the H2O2 and MDA contents by increasing the activities of POD, DHAR, MDHAR, and GR and the contents of AsA and GSH. Applicating MeJA increased the content of chelate substances, cell wall polysaccharides, and cell wall functional groups. Besides, MeJA regulated the expression of Cd transporter genes, with shoot and root Cd content decreasing by 46.7% and 27.9% in LM, respectively. Spraying 10 μM MeJA reduced Cd absorption and translocation from vegetative organs to grains, thus reducing the grain Cd content of LM and ZY by 36.1 and 39.9% under 5 mg⋅kg-1 Cd treatment, respectively. Overexpressing TaJMT significantly increased the MeJA content and Cd tolerance of Arabidopsis. These results have improved the understanding of the mechanism through which MeJA alleviates Cd toxicity and reduces Cd accumulation in wheat.
Collapse
Affiliation(s)
- Dazhong Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China; Henan Provincial Key Laboratory of Hybrid Wheat, School of Agriculture, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, China
| | - Hairong Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yuanbo Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Zhan Su
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Tiezhu Hu
- Henan Provincial Key Laboratory of Hybrid Wheat, School of Agriculture, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, China
| | - Jiajia Liu
- Henan Provincial Key Laboratory of Hybrid Wheat, School of Agriculture, Henan Institute of Science and Technology/Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, China
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Na Niu
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Lingjian Ma
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
3
|
Fu S, Iqbal B, Li G, Alabbosh KF, Khan KA, Zhao X, Raheem A, Du D. The role of microbial partners in heavy metal metabolism in plants: a review. PLANT CELL REPORTS 2024; 43:111. [PMID: 38568247 DOI: 10.1007/s00299-024-03194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant-microbe interactions. However, the complexity of plant-microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant-microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.
Collapse
Affiliation(s)
- Shilin Fu
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, Suzhou, People's Republic of China.
| | | | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, 61413, Abha, Saudi Arabia
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Abdulkareem Raheem
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
| |
Collapse
|
4
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
5
|
Zheng X, Li Y, Xu J, Lu Y. Response of Propsilocerus akamusi (Diptera: Chironomidae) to the leachates from AMD-contaminated sediments: Implications for metal bioremediation of AMD-polluted areas. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106795. [PMID: 38070394 DOI: 10.1016/j.aquatox.2023.106795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 01/02/2024]
Abstract
Acid mine water (AMD) is a global environmental problem caused by coal mining with the characteristics of low pH and high concentrations of metals and sulfates. It is a pertinent topic to seek both economical and environmentally friendly approaches to minimize the harmful effects of AMD on the environment. Insect larvae are considered a promising solution for pollution treatment. Chironomidae is the most tolerant family to contaminants in pools and its larvae have a strong capacity for metal accumulation from sediment. This paper aimed to evaluate the larvae of Propsilocerus akamusi, a dominant species in the chironomid community, as a new species for entomoremediation in AMD-polluted areas. We detected the toxic effects of AMD on P. akamusi larvae based on their survival and the trace metals bioaccumulation capabilities of P. akamusi larvae. Moreover, we analyzed the expression patterns of four stress-response genes, HSP70, Eno1, HbV, and Hb VII in P. akamusi larvae. Our results revealed that AMD exposure did not significantly affect the survival of the P. akamusi larvae and individuals exposed to some AMD gradients even exhibited higher survival. We also observed the significantly accumulated concentrations of Fe, Ni, and Zn as well as higher bioaccumulation factors (BAFs) for Ni and Zn in the P. akamusi larvae exposure to AMD. Induced expression of Eno1 and Hb VII may play important roles in the AMD tolerance of P. akamusi larvae. This study indicated the potential application of P. akamusi larvae in the metal bioremediation of AMD-polluted areas. STATEMENT OF ENVIRONMENTAL IMPLICATION: Acid mine drainage (AMD) is a global environmental problem related to coal mining activities. AMD pollution has become a long-term, worldwide issue for its interactive and complex stress factors. Bioremediation is an effective method to remove the metals of AMD from wastewater to prevent downstream pollution. However, the disadvantages of the slow growth rate, susceptibility to seasonal changes, difficult post-harvest management, and small biomass of hyperaccumulating plants greatly limit the usefulness of phytoremediation. Insect larvae may be useful candidate organisms to overcome these shortcomings and have been considered a promising pollution solution. Propsilocerus akamusi is a dominant species in the chironomid community and is distributed widely in many lakes of eastern Asia. This species has extraordinary abilities to resist various stresses. This research is the first time to our knowledge to evaluate the application of P. akamusi as a new species in entomoremediation in AMD-contaminated areas.
Collapse
Affiliation(s)
- Xianyun Zheng
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China.
| | - Yuyu Li
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Jingchao Xu
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| | - Yanchao Lu
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, PR China
| |
Collapse
|