1
|
Zhang J, Chen G, Li Y, Zhang J, Zhong L, Li L, Zhong S, Gu R. Phlomoides rotata adapts to low-nitrogen environments by promoting root growth and increasing root organic acid exudate. BMC PLANT BIOLOGY 2024; 24:1234. [PMID: 39710688 DOI: 10.1186/s12870-024-05962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Nitrogen (N) is one of the three major elements required for plant growth and development. It is of great significance to study the effects of different nitrogen application levels on the growth and root exudates of Phlomoides rotata, and can provide a theoretical basis for its scientific application of fertilizer to increase production. In this study, Phlomoides rotata were grown under different nitrogen conditions for two months. Soil and plant analyzer development (SPAD) values, bioaccumulation, root morphology, root exudate composition, nitrogen metabolism enzyme and antioxidant enzyme activity were evaluated. The results showed that compared with CK (no N fertilizer), N2 (CO(NH2)2 80 mg/kg) and N3 (CO(NH2)2 160 mg/kg) through significantly improved the activities of nitrogen metabolism enzyme nitrite reductase (NiR), glutamate dehydrogenase (GDH) and glutamine synthetase (GS), enhanced the nitrogen metabolism process, and increased the accumulation of plant soluble sugars (SS) and soluble protein (SP), thus improving Phlomoides rotata biomass yield. After 60 days of treatment, low nitrogen (N1, CO(NH2)2 40 mg/kg) increased root length, root volume, root surface area, average root diameter, significantly increased the diversity of organic acids in root exudates, and enhanced the activity of antioxidant enzymes to adapt the nitrogen deficiency environment. This study can provide new ideas for understanding the mechanism of nitrogen tolerance in Phlomoides rotata and developing scientific fertilization management strategies for plateau plants and medicinal plants.
Collapse
Affiliation(s)
- Jielin Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guopeng Chen
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jie Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liwen Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ling Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shihong Zhong
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| | - Rui Gu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, China.
| |
Collapse
|
2
|
Xu Z, Li B, Jia Y, Guo X, Lv F. Biodegradation of Imazethapyr by Bacterial Strain IM9601 Isolated from Agricultural Soil. Curr Microbiol 2023; 81:33. [PMID: 38062306 PMCID: PMC10703984 DOI: 10.1007/s00284-023-03533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/21/2023] [Indexed: 12/18/2023]
Abstract
The widespread utilization of the herbicide imazethapyr presents significant challenges to crop rotation and results in detrimental soil degradation issues. Bacterial biodegradation has emerged as a promising and eco-friendly approach for mitigating pesticide residues contamination in the environment. In this study, a novel bacterium, identified as Brevibacterium sp. IM9601, was isolated and characterized based on morphological, physiological, and biochemical characteristics, as well as 16S rRNA gene sequence. This strain exhibited the ability to utilize imazethapyr as its sole carbon source for growth. Response surface methodology (RSM) was applied to optimize the degradation conditions. The most favorable conditions were determined to be a temperature of 27 °C, pH of 6.0, and an initial inoculum with a final OD600 of 0.15. Under these optimized condition, bacterial strain IM9601 exhibited substantial imazethapyr degradation, with removal rates of 90.08 and 87.05% for initial imazethapyr concentrations of 50 and 100 mg L-1, respectively, achieved within a 5-day incubation period. This investigation highlights imazethapyr-degrading capabilities of the Brevibacterium genus bacterial strain IM9601, marking it as a potentially novel and effective solution for addressing the environmental pollution resulting from the usage of imazethapyr. The study contributes to the growing body of research on bioremediation approaches, offering a sustainable and environmentally friendly method for mitigating the adverse impacts of herbicide contamination in agricultural settings.
Collapse
Affiliation(s)
- Zehua Xu
- Horticultural Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Baiyun Li
- Horticultural Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yonghua Jia
- Horticultural Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Xinnian Guo
- Agricultural Resources and Environment Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Fanyang Lv
- Biotechnology Research Institute/State Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
3
|
Cheng L, Wang L, Wang X, Ou Y, Liu H, Hou X, Yan L, Li X. The various effect of cow manure compost on the degradation of imazethapyr in different soil types. CHEMOSPHERE 2023:139325. [PMID: 37356585 DOI: 10.1016/j.chemosphere.2023.139325] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Adding compost to soil is an effective strategy to promote the degradation of organic pollutants and reduce ecological risks. However, the effect of compost on the degradation of imazethapyr (IMET) in different soil types is not clear. To address this issue, a pot experiment was conducted, and high-throughput sequencing and mass spectrometry technology were used to identify the influence of cow manure compost on the degradation efficiency of IMET in black soil and saline-alkali soil and the role of key microorganisms. The results showed that adding compost to black soil increased the degradation rate of IMET by 12.58% and shortened the half-life by 53.37%, while in saline-alkali soil, the degradation rate of IMET decreased by 6.99% with no significant change in the half-life. High-throughput sequencing results showed that adding cow manure compost (mass ratio of 4%) significantly increased the abundance of bacterial families capable of degrading organic pollutants in black soil, but had an inhibitory effect on this bacterial community in saline-alkali soil. Redundancy analysis (RDA) results showed that total organic carbon (TOC), alkali-hydrolyzable nitrogen (AN), ammonia nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) were the main factors driving microbial community variation. Mass spectrometry analysis indicated that IMET generated three metabolites during the degradation process. Sphingomonadaceae and Vicinamibacteraceae could accelerate the breaking of side-chain alkyl groups, while Chitinophagaceae could cause the rearrangement of the imidazole ring structure, gradually metabolizing IMET into small organic molecules. The application of appropriate cow manure compost can promote the development of IMET-degrading bacteria by adjusting the organic carbon and dissolved nitrogen content in black soil. In the future, the quantitative effects of organic fertilizer application on the IMET degradation process in different soil types should be further analyzed, and microbial isolation and purification should be used to enhance the ability of microorganisms to degrade herbicides.
Collapse
Affiliation(s)
- Lei Cheng
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Lixia Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Xinhong Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China.
| | - Yang Ou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China.
| | - Huiping Liu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun, 130102, China
| | - Xia Hou
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Liming Yan
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xinyi Li
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
4
|
Barchanska H, Pszczolińska K, Perkons I, Bartkevics V, Drzewiecki S, Shakeel N, Płonka J. The metabolic processes of selected pesticides and their influence on plant metabolism. A case study of two field-cultivated wheat varieties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162709. [PMID: 36907395 DOI: 10.1016/j.scitotenv.2023.162709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Pesticides that are absorbed by plants undergo biotransformation and might affect plant metabolic processes. The metabolisms of two cultivated wheat varieties, Fidelius and Tobak, treated with commercially available fungicides (fluodioxonil, fluxapyroxad, and triticonazole) and herbicides (diflufenican, florasulam, and penoxsulam) were studied under field conditions. The results provide novel insights regarding the effects of these pesticides on plant metabolic processes. Plants (roots and shoots) were sampled six times during the six-week experiment. Pesticides and pesticide metabolites were identified using GC-MS/MS, LC-MS/MS, and LC-HRMS, while root and shoot metabolic fingerprints were determined using non-targeted analysis. Fungicide dissipation kinetics were analyzed according to the quadratic mechanism (R2: 0.8522-0.9164) for Fidelius roots, and zero-order for Tobak roots (R2: 0.8455-0.9194); shoot dissipation kinetics were analyzed according to first-order (R2: 0.9593-0.9807) and quadratic (R2: 0.8415-0.9487) mechanisms for Fidelius and Tobak, respectively. The fungicide degradation kinetics were different compared to reported literature values, most likely due to differences in pesticide application methods. The following metabolites were respectively identified in shoot extracts of both wheat varieties for fluxapyroxad, triticonazole, and penoxsulam: 3-(difluoromethyl)-N-(3',4',5'-trifluorobiphenyl-2-yl)-1H pyrazole-4-carboxamide, 2-chloro-5-{(E)-[2-hydroxy-3,3-dimethyl-2-(1H-1,2,4-triazol-1-ylmethyl)-cyclopentylidene]-methyl}phenol, and N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-2,4-dihydroxy-6 (trifluoromethyl)benzene sulfonamide. Metabolite dissipation kinetics varied depending on the wheat variety. These compounds were more persistent than parent compounds. Despite having the same cultivation conditions, the two wheat varieties varied in their metabolic fingerprints. The study revealed that pesticide metabolism has a greater dependence on plant variety and method of administration compared to the physicochemical properties of the active substance. This highlights the necessity of conducting research on pesticide metabolism under field conditions.
Collapse
Affiliation(s)
- Hanna Barchanska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland.
| | - Klaudia Pszczolińska
- Institute of Plant Protection - National Research Institute Branch Sośnicowice, 44-153 Sośnicowice, Gliwicka 29, Poland
| | - Ingus Perkons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV 1076, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV 1076, Latvia.
| | - Sławomir Drzewiecki
- Institute of Plant Protection - National Research Institute Branch Sośnicowice, 44-153 Sośnicowice, Gliwicka 29, Poland.
| | - Nasir Shakeel
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland
| | - Joanna Płonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland.
| |
Collapse
|