1
|
Parchuri P, Bhandari S, Azeez A, Chen G, Johnson K, Shockey J, Smertenko A, Bates PD. Identification of triacylglycerol remodeling mechanism to synthesize unusual fatty acid containing oils. Nat Commun 2024; 15:3547. [PMID: 38670976 PMCID: PMC11053099 DOI: 10.1038/s41467-024-47995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Typical plant membranes and storage lipids are comprised of five common fatty acids yet over 450 unusual fatty acids accumulate in seed oils of various plant species. Plant oils are important human and animal nutrients, while some unusual fatty acids such as hydroxylated fatty acids (HFA) are used in the chemical industry (lubricants, paints, polymers, cosmetics, etc.). Most unusual fatty acids are extracted from non-agronomic crops leading to high production costs. Attempts to engineer HFA into crops are unsuccessful due to bottlenecks in the overlapping pathways of oil and membrane lipid synthesis where HFA are not compatible. Physaria fendleri naturally overcomes these bottlenecks through a triacylglycerol (TAG) remodeling mechanism where HFA are incorporated into TAG after initial synthesis. TAG remodeling involves a unique TAG lipase and two diacylglycerol acyltransferases (DGAT) that are selective for different stereochemical and acyl-containing species of diacylglycerol within a synthesis, partial degradation, and resynthesis cycle. The TAG lipase interacts with DGAT1, localizes to the endoplasmic reticulum (with the DGATs) and to puncta around the lipid droplet, likely forming a TAG remodeling metabolon near the lipid droplet-ER junction. Each characterized DGAT and TAG lipase can increase HFA accumulation in engineered seed oils.
Collapse
Affiliation(s)
- Prasad Parchuri
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Sajina Bhandari
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Abdul Azeez
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Grace Chen
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
| | - Kumiko Johnson
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA
| | - Jay Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, 70124, LA, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
2
|
Gupta A, Kumar M, Zhang B, Tomar M, Walia AK, Choyal P, Saini RP, Potkule J, Burritt DJ, Sheri V, Verma P, Chandran D, Tran LSP. Improvement of qualitative and quantitative traits in cotton under normal and stressed environments using genomics and biotechnological tools: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111937. [PMID: 38043729 DOI: 10.1016/j.plantsci.2023.111937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 10/29/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Due to the increasing demand for high-quality and high fiber-yielding cotton (Gossypium spp.), research into the development of stress-resilient cotton cultivars has acquired greater significance. Various biotic and abiotic stressors greatly affect cotton production and productivity, posing challenges to the future of the textile industry. Moreover, the content and quality of cottonseed oil can also potentially be influenced by future environmental conditions. Apart from conventional methods, genetic engineering has emerged as a potential tool to improve cotton fiber quality and productivity. Identification and modification of genome sequences and the expression levels of yield-related genes using genetic engineering approaches have enabled to increase both the quality and yields of cotton fiber and cottonseed oil. Herein, we evaluate the significance and molecular mechanisms associated with the regulation of cotton agronomic traits under both normal and stressful environmental conditions. In addition, the importance of gossypol, a toxic phenolic compound in cottonseed that can limit consumption by animals and humans, is reviewed and discussed.
Collapse
Affiliation(s)
- Aarti Gupta
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Republic of Korea; Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Maharishi Tomar
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, India
| | | | - Prince Choyal
- ICAR - Indian Institute of Soybean Research, Indore 452001, India
| | | | - Jayashree Potkule
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Vijay Sheri
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Pooja Verma
- ICAR - Central Institute for Cotton Research, Nagpur, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad 679335, Kerala, India
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|