1
|
Yu Y, Zhang L, Wu Y, Hu H, Jia J, Wu J, Li C. Genome-wide identification of SAP family genes and characterization of TaSAP6-A1 to improve Cd tolerance in Triticum aestivum L. Int J Biol Macromol 2025; 284:137415. [PMID: 39532171 DOI: 10.1016/j.ijbiomac.2024.137415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/08/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Stress Associated Proteins (SAPs) contain A20/AN1 zinc finger domains and, have been proposed to function in various physiological processes such as cold, salinity, drought, heavy metals, damage, and flooding resistance in plants. Here, a total of 131 SAP genes were identified, including T. aestivum (60), T. urartu (10), Ae. Tauschii (16), T. dicoccoides (13), O. sativa (18), and A. thaliana (14). A phylogenetic analysis revealed that the SAPs are clustered into two subfamilies. The TaSAP genes in the collinear region comprised 34 pairs of duplicated genes formed through segmental duplication events. Overexpressing TaSAP6-A1 in wheat enhanced Cd tolerance, whereas knock-down of this gene increased Cd sensitivity. Yeast two-hybrid (Y2H) and bimolecular fluorescent complementation assays (BiFC) demonstrated interaction between TaSAP6-A1 and phenylalanine ammonia-lyase (TaPAL), the first enzyme in the phenylpropanoid pathway. This study provides a valuable reference for further investigations into the functional and molecular mechanisms of the SAP gene family.
Collapse
Affiliation(s)
- Yongang Yu
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China; Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lei Zhang
- College of Life Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Yanxia Wu
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Hu
- College of Agriculture, Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang, China
| | - Jishen Jia
- College of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang, China; Henan Engineering and Technology Research Center of Digital Agriculture Henan Institute of Science and Technology, Xinxiang, China
| | - Jianyu Wu
- Henan Agricultural University, Zhengzhou 450000, China.
| | - Chengwei Li
- Henan Agricultural University, Zhengzhou 450000, China.
| |
Collapse
|
2
|
Sehrish AK, Ahmad S, Nafees M, Mahmood Z, Ali S, Du W, Kashif Naeem M, Guo H. Alleviated cadmium toxicity in wheat (Triticum aestivum L.) by the coactive role of zinc oxide nanoparticles and plant growth promoting rhizobacteria on TaEIL1 gene expression, biochemical and physiological changes. CHEMOSPHERE 2024; 364:143113. [PMID: 39151580 DOI: 10.1016/j.chemosphere.2024.143113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Cadmium (Cd) contamination in agricultural soil is a major global concern among the multitude of human health and food security. Zinc oxide nanoparticles (ZnO-NPs) and plant growth promoting rhizobacteria (PGPR) have been known to combat heavy metal toxicity in crops. Herein, the study intended to explore the interactive effect of treatments mediated by inoculation of PGPR and foliar applied ZnO-NPs to alleviate Cd induced phytotoxicity in wheat plants which is rarely investigated. For this purpose, TaEIL1 expression, morpho-physiological, and biochemical traits of wheat were examined. Our results revealed that Cd reduced growth and biomass, disrupted plant physiological and biochemical traits, and further expression patterns of TaEIL1. The foliar application of ZnO-NPs improved growth attributes, photosynthetic pigments, and gas exchange parameters in a dose-additive manner, and this effect was further amplified with a combination of PGPR. The combined application of ZnO-NPs (100 mg L-1) with PGPR considerably increased the catalase (CAT; 52.4%), peroxidase (POD; 57.4%), superoxide dismutase (SOD; 60.1%), ascorbate peroxidase (APX; 47.4%), leading to decreased malondialdehyde (MDA; 47.4%), hydrogen peroxide (H2O2; 38.2%) and electrolyte leakage (EL; 47.3%) under high Cd (20 mg kg-1) stress. Furthermore, results revealed a significant reduction in roots (56.3%), shoots (49.4%), and grains (59.4%) Cd concentration after the Combined treatment of ZnO-NPs and PGPR as compared to the control. Relative expression of TaEIL1 (two homologues) was evaluated under control (Cd 0), Cd, ZnO-NPs, PGPR, and combined treatments. Expression profiling revealed a differential expression pattern of TaEIL1 under different treatments. The expression pattern of TaEIL1 genes was upregulated under Cd stress but downregulated under combined ZnO-NPs and PGPR, revealing its crucial role in Cd stress tolerance. Inferentially, ZnO-NPs and PGPR showed significant potential to alleviate Cd toxicity in wheat by modulating the antioxidant defense system and TaEIL1 expression. By inhibiting Cd uptake, and facilitating their detoxification, this innovative approach ensures food safety and security.
Collapse
Affiliation(s)
- Adiba Khan Sehrish
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Shoaib Ahmad
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Zahid Mahmood
- Crop Science Institute, National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Muhammad Kashif Naeem
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Centre (NARC), Islamabad, Pakistan
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, Jiangsu, 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000, Quanzhou, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
3
|
Zhou J, Dong Y, Liu Y, Huang Y, Jiang W, Zheng X, Zhang H, Gong N, Bai X. Identification and Expression Analysis of Sulfate Transporter Genes Family and Function Analysis of GmSULTR3;1a from Soybean. Int J Mol Sci 2024; 25:9080. [PMID: 39201766 PMCID: PMC11354235 DOI: 10.3390/ijms25169080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Sulfate transporters (SULTRs) are essential for the transport and absorption of sulfate in plants and serve as critical transport proteins within the sulfur metabolism pathway, significantly influencing plant growth, development, and stress adaptation. A bioinformatics analysis of SULTR genes in soybean was performed, resulting in the identification and classification of twenty-eight putative GmSULTRs into four distinct groups. In this study, the characteristics of the 28 GmSULTR genes, including those involved in collinearity, gene structure, protein motifs, cis-elements, tissue expression patterns, and the response to abiotic stress and plant hormone treatments, were systematically analyzed. This study focused on conducting a preliminary functional analysis of the GmSULTR3;1a gene, wherein a high expression level of GmSULTR3;1a in the roots, stems, and leaves was induced by a sulfur deficiency and GmSULTR3;1a improved the salt tolerance. A further functional characterization revealed that GmSULTR3;1a-overexpressing soybean hairy roots had higher SO42-, GSH, and methionine (Met) contents compared with the wild-type (WT) plant. These results demonstrate that the overexpression of GmSULTR3;1a may promote the sulfur assimilation metabolism and increase the content of sulfur-containing amino acids in plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xi Bai
- College of Life Science, Northeast Agricultural University, Harbin 150001, China; (J.Z.); (Y.D.); (Y.L.); (Y.H.); (W.J.); (X.Z.); (H.Z.); (N.G.)
| |
Collapse
|
4
|
Khan MIR, Mattoo AK, Khan N, Ferrante A, Müller ML. Perspective of ethylene biology for abiotic stress acclimation in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108284. [PMID: 38135615 DOI: 10.1016/j.plaphy.2023.108284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Affiliation(s)
| | - Autar K Mattoo
- Department of Agriculture, The Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705, United States
| | - Nafees Khan
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Italy
| | | |
Collapse
|