1
|
Galatro A, Gallego S, García-Mata C, Lascano R, Santa-María GE. Nutritional stress in plants: Understanding sensing and resilience. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109207. [PMID: 39448296 DOI: 10.1016/j.plaphy.2024.109207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Affiliation(s)
- Andrea Galatro
- Instituto de Fisiología Vegetal (INFIVE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), Diagonal 113 N° 495, 1990, La Plata, Buenos Aires, Argentina; Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Junín 953, 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Susana Gallego
- Instituto de Química y Fisicoquímica Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Déan Funes 3240, Mar del Plata, 7600, Argentina
| | - Ramiro Lascano
- Unidad Ejecutora de Doble Dependencia, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Estudios Agropecuarios, Av. 11 de septiembre 4755, CP. 5014, Ciudad de Córdoba, Argentina
| | - Guillermo E Santa-María
- Instituto Tecnológico Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín, Avda. Intendente Marino km 8.2, Chascomús, 7130, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Gao L, Xing X, Guo R, Li Q, Xu Y, Pan H, Ji P, Wang P, Yu C, Li J, An Q. Effect of Different Dietary Iron Contents on Liver Transcriptome Characteristics in Wujin Pigs. Animals (Basel) 2024; 14:2399. [PMID: 39199933 PMCID: PMC11350824 DOI: 10.3390/ani14162399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Iron is an important trace element that affects the growth and development of animals and regulates oxygen transport, hematopoiesis, and hypoxia adaptations. Wujin pig has unique hypoxic adaptability and iron homeostasis; however, the specific regulatory mechanisms have rarely been reported. This study randomly divided 18 healthy Wujin piglets into three groups: the control group, supplemented with 100 mg/kg iron (as iron glycinate); the low-iron group, no iron supplementation; and the high-iron group, supplemented with 200 mg/kg iron (as iron glycinate). The pre-feeding period was 5 days, and the formal period was 30 days. Serum was collected from empty stomachs before slaughter and at slaughter to detect changes in the serum iron metabolism parameters. Gene expression in the liver was analyzed via transcriptome analysis to determine the effects of low- and high-iron diets on transcriptome levels. Correlation analysis was performed for apparent serum parameters, and transcriptome sequencing was performed using weighted gene co-expression network analysis to reveal the key pathways underlying hypoxia regulation and iron metabolism. The main results are as follows. (1) Except for the hypoxia-inducible factor 1 (HIF-1) content (between the low- and high-iron groups), significant differences were not observed among the serum iron metabolic parameters. The serum HIF-1 content of the low-iron group was significantly higher than that of the high-iron group (p < 0.05). (2) Sequencing analysis of the liver transcriptome revealed 155 differentially expressed genes (DEGs) between the low-iron and control groups, 229 DEGs between the high-iron and control groups, and 279 DEGs between the low- and high-iron groups. Bioinformatics analysis showed that the HIF-1 and transforming growth factor-beta (TGF-β) signaling pathways were the key pathways for hypoxia regulation and iron metabolism. Four genes were selected for qPCR validation, and the results were consistent with the transcriptome sequencing data. In summary, the serum iron metabolism parameter results showed that under the influence of low- and high-iron diets, Wujin piglets maintain a steady state of physiological and biochemical indices via complex metabolic regulation of the body, which reflects their stress resistance and adaptability. The transcriptome results revealed the effects of low-iron and high-iron diets on the gene expression level in the liver and showed that the HIF-1 and TGF-β signaling pathways were key for regulating hypoxia adaptability and iron metabolism homeostasis under low-iron and high-iron diets. Moreover, HIF-1α and HEPC were the key genes. The findings provide a theoretical foundation for exploring the regulatory pathways and characteristics of iron metabolism in Wujin pigs.
Collapse
Affiliation(s)
- Lin Gao
- Yunnan Provincial Key Laboratory of Tropical and Subtropical Animal Viral Diseases, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming 650201, China;
| | - Xiaokun Xing
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.X.); (R.G.); (Q.L.); (H.P.); (P.J.); (P.W.); (C.Y.); (J.L.)
| | - Rongfu Guo
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.X.); (R.G.); (Q.L.); (H.P.); (P.J.); (P.W.); (C.Y.); (J.L.)
| | - Qihua Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.X.); (R.G.); (Q.L.); (H.P.); (P.J.); (P.W.); (C.Y.); (J.L.)
| | - Yan Xu
- Yunnan East Hunter Agriculture and Forestry Development Co., Ltd., Shuifu 657803, China;
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.X.); (R.G.); (Q.L.); (H.P.); (P.J.); (P.W.); (C.Y.); (J.L.)
| | - Peng Ji
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.X.); (R.G.); (Q.L.); (H.P.); (P.J.); (P.W.); (C.Y.); (J.L.)
| | - Ping Wang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.X.); (R.G.); (Q.L.); (H.P.); (P.J.); (P.W.); (C.Y.); (J.L.)
| | - Chuntang Yu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.X.); (R.G.); (Q.L.); (H.P.); (P.J.); (P.W.); (C.Y.); (J.L.)
| | - Jintao Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.X.); (R.G.); (Q.L.); (H.P.); (P.J.); (P.W.); (C.Y.); (J.L.)
| | - Qingcong An
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (X.X.); (R.G.); (Q.L.); (H.P.); (P.J.); (P.W.); (C.Y.); (J.L.)
| |
Collapse
|
3
|
Yuan D, Wu X, Jiang X, Gong B, Gao H. Types of Membrane Transporters and the Mechanisms of Interaction between Them and Reactive Oxygen Species in Plants. Antioxidants (Basel) 2024; 13:221. [PMID: 38397819 PMCID: PMC10886204 DOI: 10.3390/antiox13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Membrane transporters are proteins that mediate the entry and exit of substances through the plasma membrane and organellar membranes and are capable of recognizing and binding to specific substances, thereby facilitating substance transport. Membrane transporters are divided into different types, e.g., ion transporters, sugar transporters, amino acid transporters, and aquaporins, based on the substances they transport. These membrane transporters inhibit reactive oxygen species (ROS) generation through ion regulation, sugar and amino acid transport, hormone induction, and other mechanisms. They can also promote enzymatic and nonenzymatic reactions in plants, activate antioxidant enzyme activity, and promote ROS scavenging. Moreover, membrane transporters can transport plant growth regulators, solute proteins, redox potential regulators, and other substances involved in ROS metabolism through corresponding metabolic pathways, ultimately achieving ROS homeostasis in plants. In turn, ROS, as signaling molecules, can affect the activity of membrane transporters under abiotic stress through collaboration with ions and involvement in hormone metabolic pathways. The research described in this review provides a theoretical basis for improving plant stress resistance, promoting plant growth and development, and breeding high-quality plant varieties.
Collapse
Affiliation(s)
| | | | | | | | - Hongbo Gao
- Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; (D.Y.); (X.W.); (X.J.); (B.G.)
| |
Collapse
|