1
|
Nittayasut N, Yata T, Chirakul S, Techakriengkrai N, Chanchaithong P. Non-replicative phage particles delivering CRISPR-Cas9 to target major blaCTX-M variants. PLoS One 2024; 19:e0303555. [PMID: 38753729 PMCID: PMC11098365 DOI: 10.1371/journal.pone.0303555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/27/2024] [Indexed: 05/18/2024] Open
Abstract
Cluster regularly interspaced short palindromic repeats and CRISPR associated protein 9 (CRISPR-Cas9) is a promising tool for antimicrobial re-sensitization by inactivating antimicrobial resistance (AMR) genes of bacteria. Here, we programmed CRISPR-Cas9 with common spacers to target predominant blaCTX-M variants in group 1 and group 9 and their promoter in an Escherichia coli model. The CRISPR-Cas9 was delivered by non-replicative phagemid particles from a two-step process, including insertion of spacer in CRISPR and construction of phagemid vector. Spacers targeting blaCTX-M promoters and internal sequences of blaCTX-M group 1 (blaCTX-M-15 and -55) and group 9 (blaCTX-M-14, -27, -65, and -90) were cloned into pCRISPR and phagemid pRC319 for spacer evaluation and phagemid particle production. Re-sensitization and plasmid clearance were mediated by the spacers targeting internal sequences of each group, resulting in 3 log10 to 4 log10 reduction of the ratio of resistant cells, but not by those targeting the promoters. The CRISPR-Cas9 delivered by modified ΦRC319 particles were capable of re-sensitizing E. coli K-12 carrying either blaCTX-M group 1 or group 9 in a dose-dependent manner from 0.1 to 100 multiplicity of infection (MOI). In conclusion, CRISPR-Cas9 system programmed with well-designed spacers targeting multiple variants of AMR gene along with a phage-based delivery system could eliminate the widespread blaCTX-M genes for efficacy restoration of available third-generation cephalosporins by reversal of resistance in bacteria.
Collapse
Affiliation(s)
- Naiyaphat Nittayasut
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sunisa Chirakul
- Division of Bacteriology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Navapon Techakriengkrai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pattrarat Chanchaithong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Food Safety and Antimicrobial Resistance, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Gruzdev N, Hacham Y, Haviv H, Stern I, Gabay M, Bloch I, Amir R, Gal M, Yadid I. Conversion of methionine biosynthesis in Escherichia coli from trans- to direct-sulfurylation enhances extracellular methionine levels. Microb Cell Fact 2023; 22:151. [PMID: 37568230 PMCID: PMC10416483 DOI: 10.1186/s12934-023-02150-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023] Open
Abstract
Methionine is an essential amino acid in mammals and a precursor for vital metabolites required for the survival of all organisms. Consequently, its inclusion is required in diverse applications, such as food, feed, and pharmaceuticals. Although amino acids and other metabolites are commonly produced through microbial fermentation, high-yield biosynthesis of L-methionine remains a significant challenge due to the strict cellular regulation of the biosynthesis pathway. As a result, methionine is produced primarily synthetically, resulting in a racemic mixture of D,L-methionine. This study explores methionine bio-production in E. coli by replacing its native trans-sulfurylation pathway with the more common direct-sulfurylation pathway used by other bacteria. To this end, we generated a methionine auxotroph E. coli strain (MG1655) by simultaneously deleting metA and metB genes and complementing them with metX and metY from different bacteria. Complementation of the genetically modified E. coli with metX/metY from Cyclobacterium marinum or Deinococcus geothermalis, together with the deletion of the global repressor metJ and overexpression of the transporter yjeH, resulted in a substantial increase of up to 126 and 160-fold methionine relative to the wild-type strain, respectively, and accumulation of up to 700 mg/L using minimal MOPS medium and 2 ml culture. Our findings provide a method to study methionine biosynthesis and a chassis for enhancing L-methionine production by fermentation.
Collapse
Affiliation(s)
- Nadya Gruzdev
- Migal - Galilee Research Institute, Kiryat Shmona, 11016, Israel
| | - Yael Hacham
- Migal - Galilee Research Institute, Kiryat Shmona, 11016, Israel
- Tel-Hai College, Upper Galilee, 1220800, Israel
| | - Hadar Haviv
- Migal - Galilee Research Institute, Kiryat Shmona, 11016, Israel
| | - Inbar Stern
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Matan Gabay
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Itai Bloch
- Migal - Galilee Research Institute, Kiryat Shmona, 11016, Israel
| | - Rachel Amir
- Migal - Galilee Research Institute, Kiryat Shmona, 11016, Israel
- Tel-Hai College, Upper Galilee, 1220800, Israel
| | - Maayan Gal
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Itamar Yadid
- Migal - Galilee Research Institute, Kiryat Shmona, 11016, Israel.
- Tel-Hai College, Upper Galilee, 1220800, Israel.
| |
Collapse
|
3
|
Bakkes PJ, Ramp P, Bida A, Dohmen-Olma D, Bott M, Freudl R. Improved pEKEx2-derived expression vectors for tightly controlled production of recombinant proteins in Corynebacterium glutamicum. Plasmid 2020; 112:102540. [DOI: 10.1016/j.plasmid.2020.102540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
|
4
|
High copy number mutants derived from Corynebacterium glutamicum cryptic plasmid pAM330 and copy number control. J Biosci Bioeng 2019; 127:529-538. [DOI: 10.1016/j.jbiosc.2018.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 11/21/2022]
|
5
|
Cameron Coates R, Blaskowski S, Szyjka S, van Rossum HM, Vallandingham J, Patel K, Serber Z, Dean J. Systematic investigation of CRISPR-Cas9 configurations for flexible and efficient genome editing in Corynebacterium glutamicum NRRL-B11474. J Ind Microbiol Biotechnol 2019; 46:187-201. [PMID: 30484125 DOI: 10.1007/s10295-018-2112-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
This study details a reliable and efficient method for CRISPR-Cas9 genome engineering in the high amino acid-producing strain of Corynebacterium glutamicum, NRRL-B11474. Our investigation demonstrates that a plasmid-encoded single-guide RNA paired with different edit-encoding fragments is sufficient to generate edits without the addition of an exogenous recombinase. This approach leverages a genome-integrated copy of the cas9 gene for reduced toxicity, in combination with a single plasmid carrying the targeting guide RNA and matching edit fragment. Our study systematically investigated the impact of homology arm length on editing efficiency and demonstrates genome editing with homology arm lengths as small as 25 bp for single-nucleotide polymorphisms and 75 bp for 100 bp sequence swaps. These homology arm lengths are smaller than previously reported for other strains of C. glutamicum. Our study finds that C. glutamicum NRRL-B11474 is not amenable to efficient transformation with plasmids containing the BL1, NG2, or CC1 origins of replication. This finding differs from all previously reported approaches to plasmid-based CRISPR-Cas9 or Cpf1 editing in other strains of C. glutamicum. Two alternative origins of replication (CG1 and CASE1) can be used to successfully introduce genome edits; furthermore, our data demonstrate improved editing efficiency when guide RNAs and edit fragments are encoded on plasmids carrying the CASE1 origin of replication (compared to plasmids carrying CG1). In addition, this study demonstrates that efficient editing can be done using an integrated Cas9 without the need for a recombinase. We demonstrate that the specifics of CRISPR-Cas9 editing configurations may need to be tailored to enable different edit types in a particular strain background. Refining configuration parameters such as edit type, homology arm length, and plasmid origin of replication enables robust, flexible, and efficient CRISPR-Cas9 editing in differing genetic strain contexts.
Collapse
Affiliation(s)
| | | | - Shawn Szyjka
- Zymergen Inc., 5980 Horton St #105, Emeryville, CA, 94608, USA
| | | | | | - Kedar Patel
- Zymergen Inc., 5980 Horton St #105, Emeryville, CA, 94608, USA
| | - Zach Serber
- Zymergen Inc., 5980 Horton St #105, Emeryville, CA, 94608, USA
| | - Jed Dean
- Zymergen Inc., 5980 Horton St #105, Emeryville, CA, 94608, USA.
| |
Collapse
|
6
|
Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery. Appl Microbiol Biotechnol 2018; 102:3915-3937. [DOI: 10.1007/s00253-018-8896-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/22/2023]
|
7
|
Shin JH, Park SH, Oh YH, Choi JW, Lee MH, Cho JS, Jeong KJ, Joo JC, Yu J, Park SJ, Lee SY. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Microb Cell Fact 2016; 15:174. [PMID: 27717386 PMCID: PMC5054628 DOI: 10.1186/s12934-016-0566-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/22/2016] [Indexed: 01/30/2023] Open
Abstract
Background 5-Aminovaleric acid (5AVA) is an important five-carbon platform chemical that can be used for the synthesis of polymers and other chemicals of industrial interest. Enzymatic conversion of l-lysine to 5AVA has been achieved by employing lysine 2-monooxygenase encoded by the davB gene and 5-aminovaleramidase encoded by the davA gene. Additionally, a recombinant Escherichia coli strain expressing the davB and davA genes has been developed for bioconversion of l-lysine to 5AVA. To use glucose and xylose derived from lignocellulosic biomass as substrates, rather than l-lysine as a substrate, we previously examined direct fermentative production of 5AVA from glucose by metabolically engineered E. coli strains. However, the yield and productivity of 5AVA achieved by recombinant E. coli strains remain very low. Thus, Corynebacterium glutamicum, a highly efficient l-lysine producing microorganism, should be useful in the development of direct fermentative production of 5AVA using l-lysine as a precursor for 5AVA. Here, we report the development of metabolically engineered C. glutamicum strains for enhanced fermentative production of 5AVA from glucose. Results Various expression vectors containing different promoters and origins of replication were examined for optimal expression of Pseudomonas putida davB and davA genes encoding lysine 2-monooxygenase and delta-aminovaleramidase, respectively. Among them, expression of the C. glutamicum codon-optimized davA gene fused with His6-Tag at its N-Terminal and the davB gene as an operon under a strong synthetic H36 promoter (plasmid p36davAB3) in C. glutamicum enabled the most efficient production of 5AVA. Flask culture and fed-batch culture of this strain produced 6.9 and 19.7 g/L (together with 11.9 g/L glutaric acid as major byproduct) of 5AVA, respectively. Homology modeling suggested that endogenous gamma-aminobutyrate aminotransferase encoded by the gabT gene might be responsible for the conversion of 5AVA to glutaric acid in recombinant C. glutamicum. Fed-batch culture of a C. glutamicum gabT mutant-harboring p36davAB3 produced 33.1 g/L 5AVA with much reduced (2.0 g/L) production of glutaric acid. Conclusions Corynebacterium glutamicum was successfully engineered to produce 5AVA from glucose by optimizing the expression of two key enzymes, lysine 2-monooxygenase and delta-aminovaleramidase. In addition, production of glutaric acid, a major byproduct, was significantly reduced by employing C. glutamicum gabT mutant as a host strain. The metabolically engineered C. glutamicum strains developed in this study should be useful for enhanced fermentative production of the novel C5 platform chemical 5AVA from renewable resources. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0566-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jae Ho Shin
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seok Hyun Park
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young Hoon Oh
- Division of Convergence Chemistry, Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34602, Republic of Korea
| | - Jae Woong Choi
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Moon Hee Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Sung Cho
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong Chan Joo
- Division of Convergence Chemistry, Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34602, Republic of Korea
| | - James Yu
- Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Si Jae Park
- Department of Environmental Engineering and Energy, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggido, 17058, Republic of Korea.
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus program), Institute for the BioCentury, Center for Systems and Synthetic Biotechnology, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Metabolic Engineering National Research Laboratory and BioProcess Engineering Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea. .,Bioinformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Persicke M, Albersmeier A, Bednarz H, Niehaus K, Kalinowski J, Rückert C. Genome sequence of the soil bacterium Corynebacterium callunae type strain DSM 20147(T). Stand Genomic Sci 2015; 10:5. [PMID: 26203323 PMCID: PMC4510995 DOI: 10.1186/1944-3277-10-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/21/2014] [Indexed: 11/23/2022] Open
Abstract
Corynebacterium callunae DSM 20147(T) is a member of the genus Corynebacterium which contains Gram-positive and non-spore forming bacteria with a high G + C content. C. callunae was isolated during a screening for l-glutamic acid producing bacteria and belongs to the aerobic and non-haemolytic corynebacteria. As this is a type strain in a subgroup of industrial relevant bacteria for many of which there are also complete genome sequence available, knowledge of the complete genome sequence might enable genome comparisons to identify production relevant genetic loci. This project, describing the 2.84 Mbp long chromosome and the two plasmids, pCC1 (4.11 kbp) and pCC2 (85.02 kbp), with their 2,647 protein-coding and 82 RNA genes, will aid the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
Affiliation(s)
- Marcus Persicke
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Andreas Albersmeier
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Hanna Bednarz
- Proteome and Metabolome Research, Bielefeld University, Bielefeld, Germany
| | - Karsten Niehaus
- Proteome and Metabolome Research, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Christian Rückert
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
9
|
Pátek M, Nešvera J. Promoters and Plasmid Vectors of Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
General and molecular microbiology and microbial genetics in the IM CAS. J Ind Microbiol Biotechnol 2010; 37:1227-39. [DOI: 10.1007/s10295-010-0859-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/20/2010] [Indexed: 11/28/2022]
|
11
|
Farrar MD, Howson KM, Emmott JE, Bojar RA, Holland KT. Characterisation of cryptic plasmid pPG01 from Propionibacterium granulosum, the first plasmid to be isolated from a member of the cutaneous propionibacteria. Plasmid 2007; 58:68-75. [PMID: 17360038 DOI: 10.1016/j.plasmid.2007.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 01/14/2007] [Indexed: 11/17/2022]
Abstract
A cryptic plasmid, pPG01 (3539bp), was isolated from Propionibacterium granulosum and sequenced. Analysis of open reading frames (ORFs) predicted pPG01 to encode three proteins. The largest protein (447 amino acids) showed homology to the FtsK/SpoIIIE family of proteins involved in chromosome partitioning during cell division and conjugal transfer of DNA. A second protein of 433 amino acids showed homology to plasmid replication proteins that mediate replication by the rolling circle mechanism. A third protein of 124 amino acids had no predicted function. All three ORFs were expressed as shown by reverse transcription-PCR analysis. Putative double- and single-stranded origins of replication were identified. Rolling circle replication of pPG01 was confirmed by the detection of single-stranded DNA intermediates. The first characterisation of a plasmid from the cutaneous propionibacteria may lead to development of a vector system to enable the genetic manipulation of this important group of organisms.
Collapse
Affiliation(s)
- Mark D Farrar
- Skin Research Centre, Institute of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|