1
|
Cao D, Subhadra B, Lee YJ, Thoresen M, Cornejo S, Olivier A, Woolums A, Inzana TJ. Contribution of Hfq to gene regulation and virulence in Histophilus somni. Infect Immun 2024; 92:e0003824. [PMID: 38391206 PMCID: PMC10929436 DOI: 10.1128/iai.00038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Histophilus somni is one of the predominant bacterial pathogens responsible for bovine respiratory and systemic diseases in cattle. Despite the identification of numerous H. somni virulence factors, little is known about the regulation of such factors. The post-transcriptional regulatory protein Hfq may play a crucial role in regulation of components that affect bacterial virulence. The contribution of Hfq to H. somni phenotype and virulence was investigated following creation of an hfq deletion mutant of H. somni strain 2336 (designated H. somni 2336Δhfq). A comparative analysis of the mutant to the wild-type strain was carried out by examining protein and carbohydrate phenotype, RNA sequence, intracellular survival in bovine monocytes, serum susceptibility, and virulence studies in mouse and calf models. H. somni 2336Δhfq exhibited a truncated lipooligosaccharide (LOS) structure, with loss of sialylation. The mutant demonstrated increased susceptibility to intracellular and serum-mediated killing compared to the wild-type strain. Transcriptomic analysis displayed significant differential expression of 832 upregulated genes and 809 downregulated genes in H. somni 2336Δhfq compared to H. somni strain 2336, including significant downregulation of lsgB and licA, which contribute to LOS oligosaccharide synthesis and sialylation. A substantial number of differentially expressed genes were associated with polysaccharide synthesis and other proteins that could influence virulence. The H. somni 2336Δhfq mutant strain was attenuated in a mouse septicemia model and somewhat attenuated in a calf intrabronchial challenge model. H. somni was recovered less frequently from nasopharyngeal swabs, endotracheal aspirates, and lung tissues of calves challenged with H. somni 2336Δhfq compared to the wild-type strain, and the percentage of abnormal lung tissue in calves challenged with H. somni 2336Δhfq was lower than in calves challenged with the wild-type strain. In conclusion, our results support that Hfq accounts for the regulation of H. somni virulence factors.
Collapse
Affiliation(s)
- Dianjun Cao
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| | - Bindu Subhadra
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| | - Yue-Jia Lee
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| | - Merrilee Thoresen
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Santiago Cornejo
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Alicia Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Amelia Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Thomas J. Inzana
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, New York, USA
| |
Collapse
|
2
|
The Role of luxS in Histophilus somni Virulence and Biofilm Formation. Infect Immun 2021; 89:IAI.00567-20. [PMID: 33139386 DOI: 10.1128/iai.00567-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/29/2020] [Indexed: 01/09/2023] Open
Abstract
S-Ribosylhomocysteinase (LuxS) is required for the synthesis of the autoinducer-2 (AI-2) quorum-sensing signaling molecule in many Gram-negative bacteria. The bovine (and ovine) opportunistic pathogen Histophilus somni contains luxS and forms a biofilm containing an exopolysaccharide (EPS) in the matrix. Since biofilm formation is regulated by quorum sensing in many bacteria, the roles of luxS in H. somni virulence and biofilm formation were investigated. Although culture supernatants from H. somni were ineffective at inducing bioluminescence in the Vibrio harveyi reporter strain BB170, H. somni luxS complemented the biosynthesis of AI-2 in the luxS-deficient Escherichia coli strain DH5α. H. somni strain 2336 luxS was inactivated by transposon mutagenesis. RNA expression profiles revealed that many genes were significantly differentially expressed in the luxS mutant compared to that in the wild-type, whether the bacteria were grown planktonically or in a biofilm. Furthermore, the luxS mutant had a truncated and asialylated lipooligosaccharide (LOS) and was substantially more serum sensitive than the wild-type. Not surprisingly, the luxS mutant was attenuated in a mouse model for H. somni virulence, and some of the altered phenotypes were partially restored after the mutation was complemented with a functional luxS However, no major differences were observed between the wild-type and the luxS mutant in regard to outer membrane protein profiles, biofilm formation, EPS production, or intracellular survival. These results indicate that luxS plays a role in H. somni virulence in the context of LOS biosynthesis but not biofilm formation or other phenotypic properties examined.
Collapse
|
4
|
Siddaramappa S, Challacombe JF, Petersen JM, Pillai S, Kuske CR. Comparative analyses of a putative Francisella conjugative element. Genome 2014; 57:137-44. [PMID: 24884689 DOI: 10.1139/gen-2013-0231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large circular plasmid detected in Francisella novicida-like strain PA10-7858, designated pFNPA10, was sequenced completely and analyzed. This 41,013-bp plasmid showed no homology to any of the previously sequenced Francisella plasmids and was 8-10 times larger in size than them. A total of 57 ORFs were identified within pFNPA10 and at least 9 of them encoded putative proteins with homology to different conjugal transfer proteins. The presence of iteron-like direct repeats and an ORF encoding a putative replication protein within pFNPA10 suggested that it replicated by the theta mode. Phylogenetic analyses indicated that pFNPA10 had no near neighbors in the databases and that it may have originated within an environmental Francisella lineage. Based on its features, pFNPA10 appears to be a novel extra-chromosomal genetic element within the genus Francisella. The suitability of pFNPA10 as a vector for transformation of species of Francisella by conjugation remains to be explored.
Collapse
|
5
|
Siddaramappa S, Challacombe JF, Duncan AJ, Gillaspy AF, Carson M, Gipson J, Orvis J, Zaitshik J, Barnes G, Bruce D, Chertkov O, Detter JC, Han CS, Tapia R, Thompson LS, Dyer DW, Inzana TJ. Horizontal gene transfer in Histophilus somni and its role in the evolution of pathogenic strain 2336, as determined by comparative genomic analyses. BMC Genomics 2011; 12:570. [PMID: 22111657 PMCID: PMC3339403 DOI: 10.1186/1471-2164-12-570] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/23/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Pneumonia and myocarditis are the most commonly reported diseases due to Histophilus somni, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in H. somni using traditional methods. Analyses of the genome sequences of several Pasteurellaceae species have provided insights into their biology and evolution. In view of the economic and ecological importance of H. somni, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the Pasteurellaceae. RESULTS The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the Pasteurellaceae, several H. somni genes that may encode proteins involved in virulence (e.g., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor. CONCLUSIONS Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two H. somni strains.
Collapse
Affiliation(s)
- Shivakumara Siddaramappa
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Jean F Challacombe
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Alison J Duncan
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Allison F Gillaspy
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Matthew Carson
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Jenny Gipson
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Joshua Orvis
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Jeremy Zaitshik
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Gentry Barnes
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - David Bruce
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Olga Chertkov
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J Chris Detter
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Cliff S Han
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Roxanne Tapia
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Linda S Thompson
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David W Dyer
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Thomas J Inzana
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| |
Collapse
|
6
|
Common ancestry and novel genetic traits of Francisella novicida-like isolates from North America and Australia as revealed by comparative genomic analyses. Appl Environ Microbiol 2011; 77:5110-22. [PMID: 21666011 DOI: 10.1128/aem.00337-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella novicida is a close relative of Francisella tularensis, the causative agent of tularemia. The genomes of F. novicida-like clinical isolates 3523 (Australian strain) and Fx1 (Texas strain) were sequenced and compared to F. novicida strain U112 and F. tularensis strain Schu S4. The strain 3523 chromosome is 1,945,310 bp and contains 1,854 protein-coding genes. The strain Fx1 chromosome is 1,913,619 bp and contains 1,819 protein-coding genes. NUCmer analyses revealed that the genomes of strains Fx1 and U112 are mostly colinear, whereas the genome of strain 3523 has gaps, translocations, and/or inversions compared to genomes of strains Fx1 and U112. Using the genome sequence data and comparative analyses with other members of the genus Francisella, several strain-specific genes that encode putative proteins involved in RTX toxin production, polysaccharide biosynthesis/modification, thiamine biosynthesis, glucuronate utilization, and polyamine biosynthesis were identified. The RTX toxin synthesis and secretion operon of strain 3523 contains four open reading frames (ORFs) and was named rtxCABD. Based on the alignment of conserved sequences upstream of operons involved in thiamine biosynthesis from various bacteria, a putative THI box was identified in strain 3523. The glucuronate catabolism loci of strains 3523 and Fx1 contain a cluster of nine ORFs oriented in the same direction that appear to constitute an operon. Strains U112 and Schu S4 appeared to have lost the loci for RTX toxin production, thiamine biosynthesis, and glucuronate utilization as a consequence of host adaptation and reductive evolution. In conclusion, comparative analyses provided insights into the common ancestry and novel genetic traits of these strains.
Collapse
|