Letzkus M, Trela C, Mera PE. TipN's involvement with centromere segregation in Caulobacter crescentus.
BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572679. [PMID:
38187783 PMCID:
PMC10769339 DOI:
10.1101/2023.12.20.572679]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Bacteria's ability to maintain chromosomal integrity throughout their life cycle is crucial for their survival. In Caulobacter crescentus, the polar factor TipN has been proposed to be involved with the partitioning system ParABS. However, cells with tipN knocked out display subtle parS segregation defects. We hypothesized that TipN's role with parS segregation is obscured by other forces that are ParABS-independent. To test our hypothesis, we removed one of those forces - chromosome replication - and analyzed the role of TipN with ParA. We first demonstrate that ParA retains its ability to transport the centromeric region parS from the stalked pole to the opposite pole in the absence of chromosome replication. Our data revealed that in the absence of chromosome replication, TipN becomes essential for ParA's ability to transport parS. Furthermore, we identify a potential connection between the replication initiator DnaA and TipN. Although TipN is not essential for viability, tipN knockout cells lose viability when the regulation of DnaA levels is altered. Our data suggest that the DnaA-dependent susceptibility of tipN knockout cells is connected to parS segregation. Collectively, this work provides insights into the complex regulation involved in the coordination of chromosome replication and segregation in bacteria.
Collapse