1
|
Zhu Y, Liu J, Sun L, Liu M, Qi Q, Hou J. Development of genetic markers in Yarrowia lipolytica. Appl Microbiol Biotechnol 2024; 108:14. [PMID: 38170308 DOI: 10.1007/s00253-023-12835-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 01/05/2024]
Abstract
The oleaginous yeast Yarrowia lipolytica represents a potential microbial cell factory for the recombinant production of various valuable products. Currently, the commonly used selection markers for transformation in Y. lipolytica are limited, and successive genetic manipulations are often restricted by the number of available selection markers. In our study, we developed a dominant marker, dsdA, which encodes a D-serine deaminase for genetic manipulation in Y. lipolytica. In Y. lipolytica, this marker confers the ability to use D-serine as a nitrogen source. In addition, the selection conditions of several infrequently used dominant markers including bleoR (zeocin resistance), kanMX (G418 resistance), and guaB (mycophenolic acid resistance) were also analyzed. Our results demonstrated that these selection markers can be used for the genetic manipulation of Y. lipolytica and their selection conditions were different for various strains. Ultimately, the selection markers tested here will be useful to expand the genetic toolbox of Y. lipolytica. KEY POINTS: • The dsdA from Escherichia coli was developed as a dominant marker. • The applicability of several resistance markers in Y. lipolytica was determined. • We introduced the Cre/mutant lox system for marker recycling.
Collapse
Affiliation(s)
- Yamin Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, People's Republic of China
| | - Jianhui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, People's Republic of China
| | - Lingxuan Sun
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, People's Republic of China
| | - Mengmeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, People's Republic of China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, People's Republic of China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, Shandong, 266237, People's Republic of China.
| |
Collapse
|
2
|
Ji L, Xu S, Zhang Y, Cheng H. Screening of broad-host expression promoters for shuttle expression vectors in non-conventional yeasts and bacteria. Microb Cell Fact 2024; 23:230. [PMID: 39152436 PMCID: PMC11330142 DOI: 10.1186/s12934-024-02506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Non-conventional yeasts and bacteria gain significance in synthetic biology for their unique metabolic capabilities in converting low-cost renewable feedstocks into valuable products. Improving metabolic pathways and increasing bioproduct yields remain dependent on the strategically use of various promoters in these microbes. The development of broad-spectrum promoter libraries with varying strengths for different hosts is attractive for biosynthetic engineers. RESULTS In this study, five Yarrowia lipolytica constitutive promoters (yl.hp4d, yl.FBA1in, yl.TEF1, yl.TDH1, yl.EXP1) and five Kluyveromyces marxianus constitutive promoters (km.PDC1, km.FBA1, km.TEF1, km.TDH3, km.ENO1) were selected to construct promoter-reporter vectors, utilizing α-amylase and red fluorescent protein (RFP) as reporter genes. The promoters' strengths were systematically characterized across Y. lipolytica, K. marxianus, Pichia pastoris, Escherichia coli, and Corynebacterium glutamicum. We discovered that five K. marxianus promoters can all express genes in Y. lipolytica and that five Y. lipolytica promoters can all express genes in K. marxianus with variable expression strengths. Significantly, the yl.TEF1 and km.TEF1 yeast promoters exhibited their adaptability in P. pastoris, E. coli, and C. glutamicum. In yeast P. pastoris, the yl.TEF1 promoter exhibited substantial expression of both amylase and RFP. In bacteria E. coli and C. glutamicum, the eukaryotic km.TEF1 promoter demonstrated robust expression of RFP. Significantly, in E. coli, The RFP expression strength of the km.TEF1 promoter reached ∼20% of the T7 promoter. CONCLUSION Non-conventional yeast promoters with diverse and cross-domain applicability have great potential for developing innovative and dynamic regulated systems that can effectively manage carbon flux and enhance target bioproduct synthesis across diverse microbial hosts.
Collapse
Affiliation(s)
- Liyun Ji
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Lavollay M, Buon C, Le Moigne V, Compain F, Guyonvarch A, Fonvielle M. Exploration of the role of the penicillin binding protein 2c (Pbp2c) in inducible β-lactam resistance in Corynebacteriaceae. Front Microbiol 2024; 15:1327723. [PMID: 38784795 PMCID: PMC11111852 DOI: 10.3389/fmicb.2024.1327723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Six genes encoding putative high molecular weight penicillin-binding proteins (Pbp) are present in the genome of the β-lactam-resistant strain Corynebacterium jeikeium K411. In this study, we show that pbp2c, one of these six genes, is present in resistant strains of Corynebacteriaceae but absent from sensitive strains. The molecular study of the pbp2c locus from C. jeikeium and its heterologous expression in Corynebacterium glutamicum allowed us to show that Pbp2c confers high levels of β-lactam resistance to the host and is under the control of a β-lactam-induced regulatory system encoded by two adjacent genes, jk0410 and jk0411. The detection of this inducible resistance may require up to 48 h of incubation, particularly in Corynebacterium amycolatum. Finally, the Pbp2c-expressing strains studied were resistant to all the β-lactam antibiotics tested, including carbapenems, ceftaroline, and ceftobiprole.
Collapse
Affiliation(s)
- Marie Lavollay
- INSERM, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, Paris, France
- Service de Microbiologie, Hôpital Européen Georges Pompidou, AP-HP Centre, Université Paris Cité, Paris, France
- Institut Mutualiste Montsouris (IMM), Service de Microbiology, Paris, France
| | - Céline Buon
- INSERM, Université Paris Cité, Sorbonne Université, Centre de Recherche des Cordeliers, Paris, France
| | - Vincent Le Moigne
- Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Fabrice Compain
- Institut Mutualiste Montsouris (IMM), Service de Microbiology, Paris, France
| | - Armel Guyonvarch
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Matthieu Fonvielle
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Ji G, Jin X, Shi F. Metabolic engineering Corynebacterium glutamicum for D-chiro-inositol production. World J Microbiol Biotechnol 2024; 40:154. [PMID: 38568465 DOI: 10.1007/s11274-024-03969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
D-chiro-inositol (DCI) is a potential drug for the treatment of type II diabetes and polycystic ovary syndrome. In order to effectively synthesize DCI in Corynebacterium glutamicum, the genes related to inositol catabolism in clusters iol1 and iol2 were knocked out in C. glutamicum SN01 to generate the chassis strain DCI-1. DCI-1 did not grow in and catabolize myo-inositol (MI). Subsequently, different exogenous and endogenous inosose isomerases were expressed in DCI-1 and their conversion ability of DCI from MI were compared. After fermentation, the strain DCI-7 co-expressing inosose isomerase IolI2 and inositol dehydrogenase IolG was identified as the optimal strain. Its DCI titer reached 3.21 g/L in the presence of 20 g/L MI. On this basis, the pH, temperature and MI concentration during whole-cell conversion of DCI by strain DCI-7 were optimized. Finally, the optimal condition that achieved the highest DCI titer of 6.96 g/L were obtained at pH 8.0, 37 °C and addition of 40 g/L MI. To our knowledge, it is the highest DCI titer ever reported.
Collapse
Affiliation(s)
- Guohui Ji
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Xia Jin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
| | - Feng Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Yin L, Xi D, Shen Y, Ding N, Shao Q, Qian Y, Fang Y. Rewiring Metabolic Flux in Corynebacterium glutamicum Using a CRISPR/dCpf1-Based Bifunctional Regulation System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3077-3087. [PMID: 38303604 DOI: 10.1021/acs.jafc.3c08529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Corynebacterium glutamicum, a microorganism classified as generally recognized as safe for use in the industrial production of food raw materials and additives, has encountered challenges in achieving widespread adoption and popularization as microbial cell factories. These obstacles arise from the intricate nature of manipulating metabolic flux through conventional methods, such as gene knockout and enzyme overexpression. To address this challenge, we developed a CRISPR/dCpf1-based bifunctional regulation system to bidirectionally regulate the expression of multiple genes in C. glutamicum. Specifically, through fusing various transcription factors to the C-terminus of dCpf1, the resulting dCpf1-SoxS exhibited both CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) capabilities in C. glutamicum by altering the binding sites of crRNAs. The bifunctional regulation system was used to fine-tune metabolic flux from shikimic acid (SA) and l-serine biosynthesis, resulting in 27-fold and 10-fold increases in SA and l-serine production, respectively, compared to the original strain. These findings highlight the potential of the CRISPR/dCpf1-based bifunctional regulation system in effectively enhancing the yield of target products in C. glutamicum.
Collapse
Affiliation(s)
- Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Dandan Xi
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yuefeng Shen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Nana Ding
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yongchang Qian
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yu Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
6
|
Lee DS, Cho EJ, Nguyen DT, Song Y, Chang J, Bae HJ. Succinic acid production from softwood with genome-edited Corynebacterium glutamicum using the CRISPR-Cpf1 system. Biotechnol J 2024; 19:e2300309. [PMID: 38180273 DOI: 10.1002/biot.202300309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Corynebacterium glutamicum is a useful microbe that can be used for producing succinic acid under anaerobic conditions. In this study, we generated a knock-out mutant of the lactate dehydrogenase 1 gene (ΔldhA-6) and co-expressed the succinic acid transporter (Psod:SucE- ΔldhA) using the CRISPR-Cpf1 genome editing system. The highly efficient HPAC (hydrogen peroxide and acetic acid) pretreatment method was employed for the enzymatic hydrolysis of softwood (Pinus densiflora) and subsequently utilized for production of succinic acid. Upon evaluating a 1%-5% hydrolysate concentration range, optimal succinic acid production with the ΔldhA mutant was achieved at a 4% hydrolysate concentration. This resulted in 14.82 g L-1 succinic acid production over 6 h. No production of acetic acid and lactic acid was detected during the fermentation. The co-expression transformant, [Psod:SucE-ΔldhA] produced 17.70 g L-1 succinic acid in 6 h. In the fed-batch system, 39.67 g L-1 succinic acid was produced over 48 h. During the fermentation, the strain consumed 100% and 73% of glucose and xylose, respectively. The yield of succinic acid from the sugars consumed was approximately 0.77 g succinic acid/g sugars. These results indicate that the production of succinic acid from softwood holds potential applications in alternative biochemical processes.
Collapse
Affiliation(s)
- Dae-Seok Lee
- Bio-energy Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Eun Jin Cho
- Bio-energy Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | | | - Younho Song
- Bio-energy Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Jihye Chang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeun-Jong Bae
- Bio-energy Research Institute, Chonnam National University, Gwangju, Republic of Korea
- School of Biotechology, Tan Tao University, Long An, Viet Nam
| |
Collapse
|
7
|
Xiang Y, Chen R, Shi F, Lai W. Exploring L-isoleucine riboswitches for enhancing 4-hydroxyisoleucine production in Corynebacterium glutamicum. Biotechnol Lett 2023; 45:1169-1181. [PMID: 37395871 DOI: 10.1007/s10529-023-03407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVES To explore an L-isoleucine (Ile)-induced biosensor for down-regulation of Ile synthesis pathway and enhancement of 4-hydroxyisoleucine (4-HIL) production in Corynebacterium glutamicum SN01. RESULTS Four Ile-induced riboswitches (IleRSN) with different strength were screened from mutation library based on TPP riboswitch. Firstly, IleRSN were integrated into the chromosome of strain SN01 immediately upstream of ilvA gene. The 4-HIL titer of strains carrying PtacM-driven IleRS1 or IleRS3 (14.09 ± 1.07, 15.20 ± 0.93 g 4-HIL L-1) were similar with control strain S-D5I (15.73 ± 2.66 g 4-HIL L-1). Then, another copy of IleRS3-ilvA was integrated downstream of the chromosomal cg0963 gene in SN01-derived strain D-RS with down-regulated L-lysine (Lys) biosynthesis. The Ile supply and 4-HIL titer increased in ilvA two-copy strains KIRSA-3-D5I and KIRSA-3-9I, and Ile concentration was maintained less than 35 mmol L-1 under the control of IleRS3 during fermentation. The resulting strain KIRSA-3-9I produced 22.46 ± 0.96 g 4-HIL L-1. CONCLUSION The screened IleRS was effective in the dynamic down-regulation of Ile synthesis pathway in C. glutamicum, and IleRSN with different strength can be applied in various conditions.
Collapse
Affiliation(s)
- Youhe Xiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Rui Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Feng Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| | - Wenmei Lai
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
8
|
Chen R, Shi F, Xiang Y, Lai W, Ji G. Establishment of CRISPR-Cpf1-assisted gene editing tool and engineering of 4-hydroxyisoleucine biosynthesis in Corynebacterium glutamicum. World J Microbiol Biotechnol 2023; 39:266. [PMID: 37524856 DOI: 10.1007/s11274-023-03705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Corynebacterium glutamicum, an important industrial producer, is a model microorganism. However, the limited gene editing methods and their defects limit the efficient genome editing of C. glutamicum. To improve the screening efficiency of second-cross-over strains of traditional SacB editing system, a universal pCS plasmid which harbors CRISPR-Cpf1 system targeting kan gene of SacB system was designed and established to kill the false positive single-cross-over strains remained abundantly after the second-cross-over events. The lethality of pCS plasmid to C. glutamicum carrying kan gene on its genome was as high as 98.6%. In the example of PodhA::PilvBNC replacement, pCS plasmid improved the screening efficiency of second-cross-over bacteria from 5% to over 95%. Then this pCS-assisted gene editing system was applied to improve the supply of precursors and reduce the generation of by-products in the production of 4-hydroxyisoleucine (4-HIL). The 4-HIL titer of one edited strain SC01-TD5IM reached 137.0 ± 33.9 mM, while the weakening of lysE by promoter engineering reduced Lys content by 19.0-47.7% and 4-HIL titer by 16.4-64.5%. These editing demonstrates again the efficiency of this novel CRISPR-Cpf1-assisted gene editing tool, suggesting it as a useful tool for improving the genome editing and metabolic engineering in C. glutamicum.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Feng Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| | - Youhe Xiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wenmei Lai
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guohui Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
9
|
Ma F, Liu H, Shi F, Xiang Y, Fan Z. Quorum sensing-mediated dynamic regulation of 4-hydroxyisoleucine biosynthesis in Corynebacterium glutamicum. World J Microbiol Biotechnol 2023; 39:181. [PMID: 37142865 DOI: 10.1007/s11274-023-03633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
With the development of synthetic biology, some quorum sensing (QS) systems have been studied and applied to coordinate growth and production. Recently, a novel ComQXPA-PsrfA system with different response strengths was constructed in Corynebacterium glutamicum. However, the plasmid-harbored ComQXPA-PsrfA system lacks genetic stability, which restricts the application of this QS system. In this study, the comQXPA expression cassette was integrated into the chromosome of C. glutamicum SN01, resulting in QSc chassis strain. The green fluorescence protein (GFP) was expressed by the natural and mutant PsrfA promoters (PsrfAM) with various strengths in QSc. All the expressions of gfp were activated to the related level in a cell density-dependent manner. Therefore, ComQXPA-PsrfAM circuit was applied for modulating the dynamic biosynthesis of 4-hydroxyisoleucine (4-HIL). First, the expression of ido encoding α-ketoglutarate (α-KG)-dependent isoleucine dioxygenase was dynamically regulated by PsrfAM promoters, resulting in QSc/NI. The 4-HIL titer (125.18 ± 11.26 mM) increased by 45.1% compared to static ido expression strain. Then, to coordinate the α-KG supply between TCA cycle and 4-HIL synthesis, the activity of α-KG dehydrogenase complex (ODHC) was dynamically inhibited by regulating the expression of ODHC inhibitor gene odhI under QS-responsive PsrfAM promoters. The highest 4-HIL titer of QSc-11O/20I (145.20 ± 7.80 mM) increased by 23.2% compared to QSc/20I. This study modulated two critical genes expression in both cell growth and 4-HIL de novo synthesis pathways by the stable ComQXPA-PsrfAM system, and 4-HIL was produced responsively with the cell density. This strategy enhanced the 4-HIL biosynthesis efficiently without additional genetic regulation.
Collapse
Affiliation(s)
- Fanqi Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Haiyan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| | - Youhe Xiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Zhengyu Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
10
|
Li H, Xu D, Zhang D, Tan X, Huang D, Ma W, Zhao G, Li Y, Liu Z, Wang Y, Hu X, Wang X. Improve L-isoleucine production in Corynebacterium glutamicum WM001 by destructing the biosynthesis of trehalose dicorynomycolate. Microbiol Res 2023; 272:127390. [PMID: 37087971 DOI: 10.1016/j.micres.2023.127390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Trehalose dicorynomycolates are structurally important constituents of the cell envelope in Corynebacterium glutamicum. The genes treS, treY, otsA, mytA and mytB are necessary for the biosynthesis of trehalose dicorynomycolates. In this study, the effect of biosynthesis of trehalose dicorynomycolates on L-isoleucine production in C. glutamicum has been investigated by deleting the genes treS, treY, otsA, mytA, and mytB in the L-isoleucine producing C. glutamicum WM001. L-isoleucine production was slightly improved in the mutants ΔtreY, ΔotsA, and ΔtreYA, and not improved in the single deletion mutant ΔtreS , but significantly improved in the triple deletion mutant ΔtreSYA. Deletion of mytA or mytB in ΔtreSYA could further improve L-isoleucine production. However, deletion of both mytA and mytB in ΔtreSYA significantly decreased L-isoleucine production. The final L-isoleucine producing C. glutamicum WL001 was constructed by deletion of treS, treY, otsA, and mytB, insertion of lrp, and replacement of the native promoter of ilvA with the L-isoleucine sensitive promoter PbrnFE7. WL001 grew worse than the control WM001, but produced 36.1% more L-isoleucine after 72 h shake flask cultivation than WM001.
Collapse
Affiliation(s)
- Hedan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Daqing Xu
- College of Life Sciences, Hebei Agricultural University, Baoding 071000, China
| | - Dezhi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Danyang Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Guihong Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ying Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ziwei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
The Influence of Outer Membrane Protein on Ampicillin Resistance of Vibrio parahaemolyticus. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:8079091. [PMID: 36688009 PMCID: PMC9859689 DOI: 10.1155/2023/8079091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 01/15/2023]
Abstract
The antibiotic resistance of the food-borne pathogen Vibrio parahaemolyticus has attracted researchers' attention in recent years, but its molecular mechanism remains poorly understood. In this study, 7 genes encoding outer membrane proteins (OMPs) were individually deleted in V. parahaemolyticus ATCC33846, and the resistance of these 7 mutants to 14 antibiotics was investigated. The results revealed that the resistance of the 7 mutants to ampicillin was significantly increased. Further exploration of 20-gene transcription changes by real time-qPCR (RT-qPCR) demonstrated that the higher ampicillin resistance might be attributed to the expression of β-lactamase and reduced peptidoglycan (PG) synthesis activity through reduced transcription of penicillin-binding proteins (PBPs), increased transcription of l,d-transpeptidases, downregulated d,d-carboxypeptidase, and alanine deficiency. This study provides a new perspective on ampicillin resistance in OMP mutants with respect to PG synthesis.
Collapse
|
12
|
Li H, Zhang J, Zhao Y, Yang W. Predicting Corynebacterium glutamicum promoters based on novel feature descriptor and feature selection technique. Front Microbiol 2023; 14:1141227. [PMID: 36937275 PMCID: PMC10018189 DOI: 10.3389/fmicb.2023.1141227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
The promoter is an important noncoding DNA regulatory element, which combines with RNA polymerase to activate the expression of downstream genes. In industry, artificial arginine is mainly synthesized by Corynebacterium glutamicum. Replication of specific promoter regions can increase arginine production. Therefore, it is necessary to accurately locate the promoter in C. glutamicum. In the wet experiment, promoter identification depends on sigma factors and DNA splicing technology, this is a laborious job. To quickly and conveniently identify the promoters in C. glutamicum, we have developed a method based on novel feature representation and feature selection to complete this task, describing the DNA sequences through statistical parameters of multiple physicochemical properties, filtering redundant features by combining analysis of variance and hierarchical clustering, the prediction accuracy of the which is as high as 91.6%, the sensitivity of 91.9% can effectively identify promoters, and the specificity of 91.2% can accurately identify non-promoters. In addition, our model can correctly identify 181 promoters and 174 non-promoters among 400 independent samples, which proves that the developed prediction model has excellent robustness.
Collapse
Affiliation(s)
- HongFei Li
- College of Life Science, Northeast Forestry University, Harbin, China
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Jingyu Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuming Zhao
- College of Life Science, Northeast Forestry University, Harbin, China
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
- *Correspondence: Yuming Zhao, ; Wen Yang,
| | - Wen Yang
- International Medical Center, Shenzhen University General Hospital, Shenzhen, China
- *Correspondence: Yuming Zhao, ; Wen Yang,
| |
Collapse
|
13
|
The role of trehalose biosynthesis on mycolate composition and L-glutamate production in Corynebacterium glutamicum. Microbiol Res 2022; 267:127260. [PMID: 36463830 DOI: 10.1016/j.micres.2022.127260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Corynebacterium glutamicum has been widely utilized for the industrial production of various amino acids. Trehalose is a prerequisite for the biosynthesis of mycolates which are structurally important constituents of the cell envelope in C. glutamicum. In this study, C. glutamicum mutant ΔSYA, which is unable to synthesize trehalose was constructed by deleting genes treS, treY and otsA in the three pathways of trehalose biosynthesis. In the fermentation medium, ΔSYA grew as well as the control C. glutamicum ATCC13869, synthesized similar levels of glucose monocorynomycolate, trehalose dicorynomycolate, and phospholipids to ATCC13869, but produced 12.5 times more L-glutamate than ATCC13869. Transcriptional levels of the genes relevant to L-arginine biosynthesis, encoding ODHC and relevant to the biosynthesis of sulfur-containing amino acids were down-regulated in ΔSYA. In minimal medium with different concentrations of glucose, ΔSYA grew worse than ATCC13869 but excreted more L-glutamate. When grown in minimal medium, phospholipids are the major lipid in ΔSYA, while glucose monocorynomycolate, trehalose dicorynomycolate, and phospholipids are the major lipid in ATCC13869. The transcriptional levels of mscCG in ΔSYA was significantly up-regulated when grown in minimal medium.
Collapse
|
14
|
Li H, Xu D, Liu Y, Tan X, Qiao J, Li Z, Qi B, Hu X, Wang X. Preventing mycolic acid reduction in Corynebacterium glutamicum can efficiently increase L-glutamate production. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Engineering the Outer Membrane Could Facilitate Better Bacterial Performance and Effectively Enhance Poly-3-Hydroxybutyrate Accumulation. Appl Environ Microbiol 2021; 87:e0138921. [PMID: 34550763 DOI: 10.1128/aem.01389-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly-3-hydroxybutyrate (PHB) is an environmentally friendly polymer and can be produced in Escherichia coli cells after overexpression of the heterologous gene cluster phaCAB. The biosynthesis of the outer membrane (OM) consumes many nutrients and influences cell morphology. Here, we engineered the OM by disrupting all gene clusters relevant to the polysaccharide portion of lipopolysaccharide (LPS), colanic acid (CA), flagella, and/or fimbria in E. coli W3110. All these disruptions benefited PHB production. Especially, disrupting all these OM components increased the PHB content to 83.0 wt% (PHB content percentage of dry cell weight), while the wild-type control produced only 1.5 wt% PHB. The increase was mainly due to the LPS truncation to Kdo2 (3-deoxy-d-manno-octulosonic acid)-lipid A, which resulted in 82.0 wt% PHB with a 25-fold larger cell volume, and disrupting CA resulted in 57.8 wt% PHB. In addition, disrupting LPS facilitated advantageous fermentation features, including 69.1% less acetate, a 550% higher percentage of autoaggregated cells among the total culture cells, 69.1% less biofilm, and a higher broken cell ratio. Further detailed mechanism investigations showed that disrupting LPS caused global changes in envelope and cellular metabolism: (i) a sharp decrease in flagella, fimbria, and secretions; (ii) more elastic cells; (iii) much greater carbon flux toward acetyl coenzyme A (acetyl-CoA) and supply of cofactors, including NADP, NAD, and ATP; and (iv) a decrease in by-product acids but increase in γ-aminobutyric acid by activating σE factor. Disrupting CA, flagella, and fimbria also improved the levels of acetyl-CoA and cofactors. The results indicate that engineering the OM is an effective strategy to enhance PHB production and highlight the applicability of OM engineering to increase microbial cell factory performance. IMPORTANCE Understanding the detailed influence of the OM on the cell envelope and cellular metabolism is important for optimizing the E. coli cell factory and many other microorganisms. This study revealed the applicability of remodeling the OM to enhance PHB accumulation as representative inclusion bodies. The results generated in this study give essential information for producing other inclusion bodies or chemicals which need more acetyl-CoA and cofactors but less by-product acids. This study is promising to provide new ideas for the improvement of microbial cell factories.
Collapse
|
16
|
Gao H, Tuyishime P, Zhang X, Yang T, Xu M, Rao Z. Engineering of microbial cells for L-valine production: challenges and opportunities. Microb Cell Fact 2021; 20:172. [PMID: 34461907 PMCID: PMC8406616 DOI: 10.1186/s12934-021-01665-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
L-valine is an essential amino acid that has wide and expanding applications with a suspected growing market demand. Its applicability ranges from animal feed additive, ingredient in cosmetic and special nutrients in pharmaceutical and agriculture fields. Currently, fermentation with the aid of model organisms, is a major method for the production of L-valine. However, achieving the optimal production has often been limited because of the metabolic imbalance in recombinant strains. In this review, the constrains in L-valine biosynthesis are discussed first. Then, we summarize the current advances in engineering of microbial cell factories that have been developed to address and overcome major challenges in the L-valine production process. Future prospects for enhancing the current L-valine production strategies are also discussed.
Collapse
Affiliation(s)
- Hui Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Philibert Tuyishime
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
17
|
L-valine production in Corynebacterium glutamicum based on systematic metabolic engineering: progress and prospects. Amino Acids 2021; 53:1301-1312. [PMID: 34401958 DOI: 10.1007/s00726-021-03066-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
L-valine is an essential branched-chain amino acid that cannot be synthesized by the human body and has a wide range of applications in food, medicine and feed. Market demand has stimulated people's interest in the industrial production of L-valine. At present, the mutagenized or engineered Corynebacterium glutamicum is an effective microbial cell factory for producing L-valine. Because the biosynthetic pathway and metabolic network of L-valine are intricate and strictly regulated by a variety of key enzymes and genes, highly targeted metabolic engineering can no longer meet the demand for efficient biosynthesis of L-valine. In recent years, the development of omics technology has promoted the upgrading of traditional metabolic engineering to systematic metabolic engineering. This whole-cell-scale transformation strategy has become a productive method for developing L-valine producing strains. This review provides an overview of the biosynthesis and regulation mechanism of L-valine, and summarizes the current metabolic engineering techniques and strategies for constructing L-valine high-producing strains. Finally, the opinion of constructing a cell factory for efficiently biosynthesizing L-valine was proposed.
Collapse
|
18
|
Recent progress in metabolic engineering of Corynebacterium glutamicum for the production of C4, C5, and C6 chemicals. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0788-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Yao C, Hu X, Wang X. Construction and application of a CRISPR/Cas9-assisted genomic editing system for Corynebacterium glutamicum. AMB Express 2021; 11:70. [PMID: 34009533 PMCID: PMC8134620 DOI: 10.1186/s13568-021-01231-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
Corynebacterium glutamicum is widely used as microbial cell factory for various bioproducts, but its genomic editing efficiency needs to be improved. In this study, a highly efficient CRISPR/Cas9-assisted genomic editing system for C. glutamicum was constructed. This system mainly involves a plasmid and can be used for both gene insertion and deletion in the chromosome of C. glutamicum. The recombinant plasmid for the target gene containing all the editing elements, and first constructed it in E. coli, then purified and transformed it into C. glutamicum. This temperature-sensitive plasmid was cured at high temperature after the genomic editing was completed in C. glutamicum. Using this genetic editing system, the genetic editing efficiency in C. glutamicum ATCC 13032 could reach 95%. The whole work of editing could be done in 8-9 days and showed most time-saving compared to the reported. Using this system, the native promoter of gdhA1 in ATCC 13032 has been replaced with the strong promoter PtacM, and more than 10 genes in ATCC 13032 have been deleted. The results demonstrate that this CRISPR/Cas9-assisted system is highly efficient and very suitable for genome editing in C. glutamicum.
Collapse
|
20
|
Yu X, Shi F, Liu H, Tan S, Li Y. Programming adaptive laboratory evolution of 4-hydroxyisoleucine production driven by a lysine biosensor in Corynebacterium glutamicum. AMB Express 2021; 11:66. [PMID: 33963930 PMCID: PMC8106565 DOI: 10.1186/s13568-021-01227-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/10/2022] Open
Abstract
4-Hydroxyisoleucine (4-HIL) is a promising drug for treating diabetes. In our previous study, 4-HIL was synthesized from self-produced L-isoleucine (Ile) in Corynebacterium glutamicum by expressing an Ile dioxygenase gene. Although the 4-HIL production of recombinant strain SZ06 increased significantly, a by-product, L-lysine (Lys) was accumulated because of the share of the first several enzymes in Ile and Lys biosynthetic pathways. In this study, programming adaptive laboratory evolution (ALE) was designed and conducted in SZ06 to promote 4-HIL biosynthesis. At first, a programming evolutionary system pMK was constructed, which contains a Lys biosensor LysG-PlysE and an evolutionary actuator composed of a mutagenesis gene and a fluorescent protein gene. The evolutionary strain SZ06/pMK was then let to be evolved programmatically and spontaneously by sensing Lys concentration. After successive rounds of evolution, nine mutant strains K1 - K9 with significantly increased 4-HIL production and growth performance were obtained. The maximum 4-HIL titer was 152.19 ± 14.60 mM, 28.4% higher than that in SZ06. This titer was higher than those of all the metabolic engineered C. glutamicum strains ever constructed. The whole genome sequencing of the nine evolved strains revealed approximately 30 genetic mutations in each strain. Only one mutation was directly related to the Lys biosynthetic pathway. Therefore, programming ALE driven by Lys biosensor can be used as an effective strategy to increase 4-HIL production in C. glutamicum.
Collapse
|
21
|
Li C, Swofford CA, Rückert C, Sinskey AJ. Optimizing recombineering in Corynebacterium glutamicum. Biotechnol Bioeng 2021; 118:2255-2264. [PMID: 33650120 DOI: 10.1002/bit.27737] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Owing to the increasing demand for amino acids and valuable commodities that can be produced by Corynebacterium glutamicum, there is a pressing need for new rapid genome engineering tools that improve the speed and efficiency of genomic insertions, deletions, and mutations. Recombineering using the λ Red system in Escherichia coli has proven very successful at genetically modifying this organism in a quick and efficient manner, suggesting that optimizing a recombineering system for C. glutamicum will also improve the speed for genomic modifications. Here, we maximized the recombineering efficiency in C. glutamicum by testing the efficacy of seven different recombinase/exonuclease pairs for integrating single-stranded DNA and double-stranded DNA (dsDNA) into the genome. By optimizing the homologous arm length and the amount of dsDNA transformed, as well as eliminating codon bias, a dsDNA recombineering efficiency of 13,250 transformed colonies/109 viable cells was achieved, the highest efficiency currently reported in the literature. Using this optimized system, over 40,000 bp could be deleted in one transformation step. This recombineering strategy will greatly improve the speed of genetic modifications in C. glutamicum and assist other systems, such as clustered regularly interspaced short palindromic repeats and multiplexed automated genome engineering, in improving targeted genome editing.
Collapse
Affiliation(s)
- Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Charles A Swofford
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Christian Rückert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| |
Collapse
|
22
|
Shi F, Fan Z, Zhang S, Wang Y, Tan S, Li Y. Optimization of ribosomal binding site sequences for gene expression and 4-hydroxyisoleucine biosynthesis in recombinant corynebacterium glutamicum. Enzyme Microb Technol 2020; 140:109622. [PMID: 32912682 DOI: 10.1016/j.enzmictec.2020.109622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
4-Hydroxyisoleucine (4-HIL) has potential value for treating diabetes. α-Ketoglutarate (α-KG)-dependent l-isoleucine dioxygenase (IDO) can convert l-isoleucine (Ile) into 4-HIL. In our previous study, 4-HIL was de novo synthesized from glucose by expressing the ido gene in Corynebacterium glutamicum strain SN01, an Ile producer, and neither Ile nor α-KG was added. In this study, ribosomal binding site (RBS) engineering was applied for gene expression and 4-HIL biosynthesis in C. glutamicum. The 18 tested RBS sequences showed greatly differing strengths for expressing ido, and 8.10-104.22 mM 4-HIL was produced. To supply the cosubstrate α-KG at different levels, the odhI gene was then expressed using the RBS sequences of high, medium, and low strength in the above mentioned optimal strain SF01 carrying R8-ido. However, 4-HIL production decreased to varying amounts, and in some strains, the α-KG was redirected into l-glutamate synthesis. Next, the O2 supply was further enhanced in three ido-odhI coexpressing strains by overexpressing the vgb gene, and 4-HIL production changed dramatically. 4-HIL (up to 119.27 ± 5.03 mM) was produced in the best strain, SF08, suggesting that the synchronic supply of cosubstrates α-KG and O2 is critical for the high-yield production of 4-HIL. Finally, the avtA gene and the ldhA-pyk2 cluster were deleted separately in SF08 to reduce pyruvate-derived byproducts, and 4-HIL production increased to 122.16 ± 5.18 and 139.82 ± 1.56 mM, respectively, indicating that both strains were promising candidates for producing 4-HIL. Therefore, fine-tuning ido expression and the cosubstrates supply through RBS engineering is a useful strategy for improving 4-HIL biosynthesis in C. glutamicum.
Collapse
Affiliation(s)
- Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Zhengyu Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Shuping Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yinghao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Shuyu Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yongfu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
23
|
Zhang Y, Liu Y, Zhang S, Ma W, Wang J, Yin L, Wang X. Metabolic engineering of Corynebacterium glutamicum WM001 to improve l-isoleucine production. Biotechnol Appl Biochem 2020; 68:568-584. [PMID: 32474971 DOI: 10.1002/bab.1963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/29/2020] [Indexed: 01/02/2023]
Abstract
In this study, l-isoleucine production in Corynebacterium glutamicum WM001 was improved by deleting three genes in the genome, replacing the native promoter of ilvA in the genome, and overexpression of five genes in an alr-based auxotrophic complementation expression system. The three genes deleted in the genome are alaT, brnQ, and alr. Deletion of alaT improved l-isoleucine production by increasing the supply of pyruvate, whereas deletion of brnQ improved l-isoleucine production by blocking the uptake of extracellular l-isoleucine. Exchange of the native promoter of ilvA with promoter tac or tacM could contribute to l-isoleucine production by increasing 2-ketobutyric acid; tac is better than tacM for improving l-isoleucine yield. Different combinations of the genes ilvBN, ppnK, lrp, and brnFE were overexpressed in an alr-based auxotrophic complementation expression system to further improve l-isoleucine production, and the best yield after 72-H flask fermentation was obtained from the strain WM005/pYCW-1-ilvBN2-ppnK1. Without addition of any antibiotics, WM005/pYCW-1-ilvBN2-ppnK1 could produce 32.1 g/L l-isoleucine after 72-H fed-batch fermentation, which is 34.3% increase compared with the original strain WM001.
Collapse
Affiliation(s)
- Yanchao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Yadi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Shuyan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, People's Republic of China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
24
|
Han G, Xu N, Sun X, Chen J, Chen C, Wang Q. Improvement of l-Valine Production by Atmospheric and Room Temperature Plasma Mutagenesis and High-Throughput Screening in Corynebacterium glutamicum. ACS OMEGA 2020; 5:4751-4758. [PMID: 32201760 PMCID: PMC7081258 DOI: 10.1021/acsomega.9b02747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
As one of the branched-chain amino acids, l-valine is an essential nutrient for most mammalian species. In this study, the l-valine producer Corynebacterium glutamicum ΔppcΔaceEΔalatΔpqo was first constructed. Additionally, an improved biosensor based on the Lrp-type transcriptional regulator and temperature-sensitive replication was built. Then, the C. glutamicum strain was mutagenized by atmospheric and room temperature plasma. A sequential three-step procedure was carried out to screen l-valine-producing strains, including the fluorescence-activated cell sorting (FACS), 96-well plate screening, and flask fermentation. The final mutant HL2-7 obtained by screening produced 3.20 g/L of l-valine, which was 21.47% higher than the titer produced by the starting strain. This study demonstrates that the l-valine-producing mutants can be successfully isolated based on the Lrp sensor system in combination with FACS screening after random mutagenesis.
Collapse
Affiliation(s)
- Guoqiang Han
- Life
Science and Technology Institute, Yangtze
Normal University, Chongqing 408100, P. R. China
- School
of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Ning Xu
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin 300308, P. R. China
| | - Xieping Sun
- Life
Science and Technology Institute, Yangtze
Normal University, Chongqing 408100, P. R. China
| | - Jinzhao Chen
- Life
Science and Technology Institute, Yangtze
Normal University, Chongqing 408100, P. R. China
| | - Chun Chen
- Life
Science and Technology Institute, Yangtze
Normal University, Chongqing 408100, P. R. China
| | - Qing Wang
- Life
Science and Technology Institute, Yangtze
Normal University, Chongqing 408100, P. R. China
- School
of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, P. R. China
| |
Collapse
|
25
|
Liu Y, Wang X, Zhan J, Hu J. The 138th residue of acetohydroxyacid synthase in Corynebacterium glutamicum is important for the substrate binding specificity. Enzyme Microb Technol 2019; 129:109357. [DOI: 10.1016/j.enzmictec.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/12/2019] [Accepted: 06/01/2019] [Indexed: 11/28/2022]
|
26
|
Deng C, Lv X, Liu Y, Li J, Lu W, Du G, Liu L. Metabolic engineering of Corynebacterium glutamicum S9114 based on whole-genome sequencing for efficient N-acetylglucosamine synthesis. Synth Syst Biotechnol 2019; 4:120-129. [PMID: 31198861 PMCID: PMC6558094 DOI: 10.1016/j.synbio.2019.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 12/26/2022] Open
Abstract
Glucosamine (GlcN) and its acetylated derivative N-acetylglucosamine (GlcNAc) are widely used in the pharmaceutical industries. Here, we attempted to achieve efficient production of GlcNAc via genomic engineering of Corynebacterium glutamicum. Specifically, we ligated the GNA1 gene, which converts GlcN-6-phosphate to GlcNAc-6-phosphate by transferring the acetyl group in Acetyl-CoA to the amino group of GlcN-6-phosphate, into the plasmid pJYW4 and then transformed this recombinant vector into the C. glutamicum ATCC 13032, ATCC 13869, ATCC 14067, and S9114 strains, and we assessed the GlcNAc titers at 0.5 g/L, 1.2 g/L, 0.8 g/L, and 3.1 g/L from each strain, respectively. This suggested that there were likely to be significant differences among the key genes in the glutamate and GlcNAc synthesis pathways of these C. glutamicum strains. Therefore, we performed whole genome sequencing of the S9114 strain, which has not been previously published, and found that there are many differences among the genes in the glutamate and GlcNAc synthesis pathways among the four strains tested. Next, nagA (encoding GlcNAc-6-phosphate deacetylase) and gamA (encoding GlcN-6-phosphate deaminase) were deleted in C. glutamicum S9114 to block the catabolism of intracellular GlcNAc, leading to a 54.8% increase in GlcNAc production (from 3.1 to 4.8 g/L) when grown in a shaker flask. In addition, lactate synthesis was blocked by knockout of ldh (encoding lactate dehydrogenase); thus, further increasing the GlcNAc titer to 5.4 g/L. Finally, we added a key gene of the GlcN synthetic pathway, glmS, from different sources into the expression vector pJYW-4-ceN, and the resulting recombinant strain CGGN2-GNA1-CgglmS produced the GlcNAc titer of 6.9 g/L. This is the first report concerning the metabolic engineering of C. glutamicum, and the results of this study provide a good starting point for further metabolic engineering to achieve industrial-scale production of GlcNAc.
Collapse
Affiliation(s)
- Chen Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wei Lu
- Shandong Runde Biotechnology CO., LTD, Taian, 271200, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
27
|
Enhancement of substrate supply and ido expression to improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum ssp. lactofermentum. Appl Microbiol Biotechnol 2019; 103:4113-4124. [DOI: 10.1007/s00253-019-09791-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
|
28
|
Zhang J, Yang F, Yang Y, Jiang Y, Huo YX. Optimizing a CRISPR-Cpf1-based genome engineering system for Corynebacterium glutamicum. Microb Cell Fact 2019; 18:60. [PMID: 30909908 PMCID: PMC6432761 DOI: 10.1186/s12934-019-1109-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/19/2019] [Indexed: 11/10/2022] Open
Abstract
Background Corynebacterium glutamicum is an important industrial strain for the production of a diverse range of chemicals. Cpf1 nucleases are highly specific and programmable, with efficiencies comparable to those of Cas9. Although the Francisella novicida (Fn) CRISPR-Cpf1 system has been adapted for genome editing in C. glutamicum, the editing efficiency is currently less than 15%, due to false positives caused by the poor targeting efficiency of the crRNA. Results To address this limitation, a screening strategy was developed in this study to systematically evaluate crRNA targeting efficiency in C. glutamicum. We quantitatively examined various parameters of the C. glutamicum CRISPR-Cpf1 system, including the protospacer adjacent motif (PAM) sequence, the length of the spacer sequence, and the type of repair template. We found that the most efficient C. glutamicum crRNA contained a 5′-NYTV-3′ PAM and a 21 bp spacer sequence. Moreover, we observed that linear DNA could be used to repair double strand breaks. Conclusions Here, we identified optimized PAM-related parameters for the CRISPR-Cpf1 system in C. glutamicum. Our study sheds light on the function of the FnCpf1 endonuclease and Cpf1-based genome editing. This optimized system, with higher editing efficiency, could be used to increase the production of bulk chemicals, such as isobutyrate, in C. glutamicum. Electronic supplementary material The online version of this article (10.1186/s12934-019-1109-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiao Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
| | - Fayu Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China
| | - Yunpeng Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China.,UCLA Institute of Advancement (Suzhou), 10 Yueliangwan Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Yu Jiang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081, China. .,UCLA Institute of Advancement (Suzhou), 10 Yueliangwan Road, Suzhou Industrial Park, Suzhou, 215123, China.
| |
Collapse
|
29
|
Strategy for improving L-isoleucine production efficiency in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2019; 103:2101-2111. [DOI: 10.1007/s00253-019-09632-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 01/25/2023]
|
30
|
Wang J, Ma W, Wang Y, Lin L, Wang T, Wang Y, Li Y, Wang X. Deletion of 76 genes relevant to flagella and pili formation to facilitate polyhydroxyalkanoate production in Pseudomonas putida. Appl Microbiol Biotechnol 2018; 102:10523-10539. [PMID: 30338358 DOI: 10.1007/s00253-018-9439-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
Abstract
Pseudomonas putida KT2442, a natural producer of polyhydroxyalkanoate, spends a lot of energy and carbon sources to form flagella and pili; therefore, deleting the genes involved in the biosynthesis and assembly of flagella and pili might improve PHA productivity. In this study, two novel deletion systems were constructed in order to efficiently remove the 76 genes involved in the biosynthesis and assembly of flagella and pili in P. putida KT2442. Both systems combine suicide-plasmid-based homologous recombination and mutant lox site-specific recombination and involve three plasmids. The first includes pK18mobsacB, pWJW101, and pWJW102; and the second includes pZJD29c, pDTW202, and pWJW103. These newly constructed systems were successfully used to remove different gene clusters in P. putida KT2442 and showed a high deletion efficiency (above 90%) whether for the second-round or the third-round recombination. Both systems could efficiently delete the gene PP4378 encoding flagellin in putida KT2442, resulting in the mutant strain WJPP01. The second system was used to remove the pili-forming gene cluster PP2357-PP2363 in putida KT2442, resulting in the mutant strain WJPP02, and also used to remove the flagella-forming gene cluster PP4329-PP4397 in WJPP02, resulting in the mutant strain WJPP03. Compared with the wild-type KT2442, the 1.2% genome reduction mutant WJPP03 grew faster, lacked flagella and motility, showed sharply decreased biofilm and 3',5'-cyclic diguanylic acid (c-di-GMP), but accumulated more polyhydroxyalkanoate. The biomass, polyhydroxyalkanoate yield, and content of WJPP03 increased 19.1, 73.4, and 45.6%, respectively, with sodium hexanoate supplementation, and also increased 11.4, 53.6, and 37.9%, respectively, with lauric acid supplementation.
Collapse
Affiliation(s)
- Jianli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenjian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yuzhou Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Lin Lin
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Tianyi Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Yuqian Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ye Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
31
|
Shi F, Zhang M, Li Y, Fang H. Sufficient NADPH supply and pknG deletion improve 4-hydroxyisoleucine production in recombinant Corynebacterium glutamicum. Enzyme Microb Technol 2018; 115:1-8. [PMID: 29859597 DOI: 10.1016/j.enzmictec.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
Abstract
Cofactor engineering is a common strategy to improve amino acid production. 4-hydroxyisoleucine (4-HIL), a nonproteinogenic amino acid, exhibits unique insulinotropic and insulin-sensitizing activities, therefore has potential medical value in treating diabetes. In our previous study, l-isoleucine (Ile) dioxygenase gene ido was overexpressed in an Ile-producing Corynebacterium glutamicum strain, and 4-HIL was de novo synthesized from glucose. In this study, to increase the NADPH supply, the endogenous NAD+ kinase gene ppnK and glucose-6-phosphate dehydrogenase gene zwf were co-expressed with ido. The resulting strain SL01 produced 81.12 ± 5.96 mM 4-HIL, 62% higher than the ido-mere expressing strain SN02. However, the strain SL02 co-expressing exogenous NADH kinase gene POS5 with ido grew slowly and its 4-HIL production decreased by 12%, perhaps due to the lower 2-oxoglutarate (OG) level and slightly weaker membrane permeability. To increase OG availability for 4-HIL conversion, the serine/threonine protein kinase G gene pknG was deleted and replaced by ido gene in SL02. The growth of the resulting strain SL04 was restored and 4-HIL production was improved to 84.14 ± 6.38 mM; meanwhile, the conversion ratio of Ile to 4-HIL reached up to 0.98 ± 0.01 mol/mol. Therefore, sufficient NADPH supply and OG availability may be benefit to 4-HIL de novo biosynthesis in recombinant C. glutamicum.
Collapse
Affiliation(s)
- Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Meiling Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yongfu Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Huimin Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
32
|
Wang X, Zhang H, Quinn PJ. Production of l-valine from metabolically engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 2018; 102:4319-4330. [DOI: 10.1007/s00253-018-8952-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 01/25/2023]
|
33
|
Gao Y, Hu X, Wang J, Li H, Wang X. Impact of mycolic acid deficiency on cells of Corynebacterium glutamicum ATCC13869. Biotechnol Appl Biochem 2017; 65:435-445. [PMID: 29072327 DOI: 10.1002/bab.1622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/17/2017] [Indexed: 11/06/2022]
Abstract
Mycolic acid (MA) plays important role in Corynebacterium glutamicum, but the key enzymes in the biosynthetic pathway of MA in C. glutamicum ATCC13869 have not been characterized. Since the locus BBD29_RS14045 in C. glutamicum ATCC13869 shows high similarity to the gene Cgl2871, which encodes Pks13, the key enzyme for synthesizing MA in C. glutamicum ATCC13032, it was deleted, resulting in the mutant WG001. Compared with the wild-type ATCC13869, MA was not synthesized in WG001, but more phosphatidylglycerol and phosphatidylinositol containing longer unsaturated fatty acids were produced. WG001 cells also show hindered cell growth and defective cell separation when compared with ATCC13869 cells. Transcriptomic analysis shows that many genes relevant to the pathways of fatty acids, inositol, phospholipids, cell wall, and cell division were significantly regulated in WG001 cells when compared with ATCC13869 cells. This study demonstrates that the locus BBD29_RS14045 encodes a key enzyme that plays important role for synthesizing MA in C. glutamicum ATCC13869.
Collapse
Affiliation(s)
- Yunfei Gao
- School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Wuxi, People's Republic of China
| | - Jianli Wang
- School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Huazhong Li
- School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaoyuan Wang
- School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China.,State Key Laboratory of Food Science and Technology, Wuxi, People's Republic of China
| |
Collapse
|
34
|
Peng F, Wang X, Sun Y, Dong G, Yang Y, Liu X, Bai Z. Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microb Cell Fact 2017; 16:201. [PMID: 29137643 PMCID: PMC5686833 DOI: 10.1186/s12934-017-0814-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/08/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Corynebacterium glutamicum (C. glutamicum) has traditionally been used as a microbial cell factory for the industrial production of many amino acids and other industrially important commodities. C. glutamicum has recently been established as a host for recombinant protein expression; however, some intrinsic disadvantages could be improved by genetic modification. Gene editing techniques, such as deletion, insertion, or replacement, are important tools for modifying chromosomes. RESULTS In this research, we report a CRISPR/Cas9 system in C. glutamicum for rapid and efficient genome editing, including gene deletion and insertion. The system consists of two plasmids: one containing a target-specific guide RNA and a homologous sequence to a target gene, the other expressing Cas9 protein. With high efficiency (up to 100%), this system was used to disrupt the porB, mepA, clpX and Ncgl0911 genes, which affect the ability to express proteins. The porB- and mepA-deletion strains had enhanced expression of green fluorescent protein, compared with the wild-type stain. This system can also be used to engineer point mutations and gene insertions. CONCLUSIONS In this study, we adapted the CRISPR/Cas9 system from S. pyogens to gene deletion, point mutations and insertion in C. glutamicum. Compared with published genome modification methods, methods based on the CRISPR/Cas9 system can rapidly and efficiently achieve genome editing. Our research provides a powerful tool for facilitating the study of gene function, metabolic pathways, and enhanced productivity in C. glutamicum.
Collapse
Affiliation(s)
- Feng Peng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xinyue Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Yang Sun
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Guibin Dong
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
35
|
Huang Y, Li L, Xie S, Zhao N, Han S, Lin Y, Zheng S. Recombineering using RecET in Corynebacterium glutamicum ATCC14067 via a self-excisable cassette. Sci Rep 2017; 7:7916. [PMID: 28801604 PMCID: PMC5554157 DOI: 10.1038/s41598-017-08352-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
Gene manipulation is essential for metabolic engineering and synthetic biology, but the current general gene manipulation methods are not applicable to the non-model strain Corynebacterium glutamicum (C. glutamicum) ATCC14067, which is used for amino acid production. Here, we report an effective and sequential deletion method for C. glutamicum ATCC14067 using the exonuclease-recombinase pair RecE + RecT (RecET) for recombineering via a designed self-excisable linear double-strand DNA (dsDNA) cassette, which contains the Cre/loxP system, to accomplish markerless deletion. To the best of our knowledge, this is the first effective and simple strategy for recombination with markerless deletion in C. glutamicum ATCC14067. This strategy provides a simple markerless deletion strategy for C. glutamicum and builds a solid basis for producer construction.
Collapse
Affiliation(s)
- Yuanyuan Huang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Lu Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Shan Xie
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Nannan Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China. .,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China. .,Guangdong research center of Industrial enzyme and Green manufacturing technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
36
|
Shi F, Zhang M, Li Y. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum. World J Microbiol Biotechnol 2017; 33:122. [DOI: 10.1007/s11274-017-2289-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
|
37
|
Transaminase encoded by NCgl2515 gene of Corynebacterium glutamicum ATCC13032 is involved in γ-aminobutyric acid decomposition. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Dong X, Zhao Y, Hu J, Li Y, Wang X. Attenuating l -lysine production by deletion of ddh and lysE and their effect on l -threonine and l -isoleucine production in Corynebacterium glutamicum. Enzyme Microb Technol 2016; 93-94:70-78. [DOI: 10.1016/j.enzmictec.2016.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 07/09/2016] [Accepted: 07/22/2016] [Indexed: 11/25/2022]
|
39
|
Effects of Lipopolysaccharide Core Sugar Deficiency on Colanic Acid Biosynthesis in Escherichia coli. J Bacteriol 2016; 198:1576-1584. [PMID: 27002133 DOI: 10.1128/jb.00094-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED When 10 Escherichia coli mutant strains with defects in lipopolysaccharide (LPS) core biosynthesis were grown on agar medium at 30°C, four of them, the ΔwaaF, ΔwaaG, ΔwaaP, and ΔwaaB strains, formed mucoid colonies, while the other six, the ΔwaaU, ΔwaaR, ΔwaaO, ΔwaaC, ΔwaaQ, and ΔwaaY strains, did not. Using light microscopy with tannin mordant staining, the presence of exopolysaccharide around the cells of the mutants that formed mucoid colonies could be discerned. The ΔwaaF mutant produced the largest amounts of exopolysaccharide, regardless of whether it was grown on agar or in liquid medium. The exopolysaccharide was isolated from the liquid growth medium of ΔwaaF cells, hydrolyzed, and analyzed by high-performance liquid chromatography with an ion-exchange column, and the results indicated that the exopolysaccharide was consistent with colanic acid. When the key genes related to the biosynthesis of colanic acid, i.e., wza, wzb, wzc, and wcaA, were deleted in the ΔwaaF background, the exopolysaccharide could not be produced any more, further confirming that it was colanic acid. Colanic acid could not be produced in strains in which rcsA, rcsB, rcsD, or rcsF was deleted in the ΔwaaF background, but a reduced level of colanic acid production was detected when the rcsC gene was deleted, suggesting that a change of lipopolysaccharide structure in ΔwaaF cells might be sensed by the RcsCDB phosphorelay system, leading to the production of colanic acid. The results demonstrate that E. coli cells can activate colanic acid production through the RcsCDB phosphorelay system in response to a structural deficiency of lipopolysaccharide. IMPORTANCE Lipopolysaccharide and colanic acid are important forms of exopolysaccharide for Escherichia coli cells. Their metabolism and biological significance have been investigated, but their interrelation with the cell stress response process is not understood. This study demonstrates, for the first time, that E. coli cells can activate colanic acid production through the RcsCDB phosphorelay system in response to a structural change of lipopolysaccharide, suggesting that bacterial cells can monitor the outer membrane integrity, which is essential for cell survival and damage repair.
Collapse
|
40
|
Han G, Hu X, Qin T, Li Y, Wang X. Metabolic engineering of Corynebacterium glutamicum ATCC13032 to produce S -adenosyl- l -methionine. Enzyme Microb Technol 2016; 83:14-21. [DOI: 10.1016/j.enzmictec.2015.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 12/14/2022]
|
41
|
Specific γ-aminobutyric acid decomposition by gabP and gabT under neutral pH in recombinant Corynebacterium glutamicum. Biotechnol Lett 2015; 37:2219-27. [DOI: 10.1007/s10529-015-1897-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
|
42
|
Chen C, Li Y, Hu J, Dong X, Wang X. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for l-valine production. Metab Eng 2015; 29:66-75. [DOI: 10.1016/j.ymben.2015.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 11/28/2022]
|
43
|
Wang N, Ni Y, Shi F. Deletion of odhA or pyc improves production of γ-aminobutyric acid and its precursor L-glutamate in recombinant Corynebacterium glutamicum. Biotechnol Lett 2015; 37:1473-81. [PMID: 25801673 DOI: 10.1007/s10529-015-1822-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/16/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To enhance γ-aminobutyric acid (GABA) production in recombinant Corynebacterium glutamicum, metabolic engineering strategies were used to improve the supply of the GABA precursor, L-glutamate. RESULTS C. glutamicum ATCC13032 co-expressing two glutamate decarboxylase genes (gadB1 and gadB2) was constructed in a previous study Shi et al. (J Ind Microbiol Biotechnol 40:1285-1296, 2013) to synthesize GABA from endogenous L-glutamate. To improve its L-glutamate supply, new strains were constructed here. First, the odhA and pyc genes were deleted separately. Then, a gadB1-gadB2 co-expression plasmid was transferred into ΔodhA, Δpyc, and ATCC13032, resulting in recombinant strains SNW201, SNW202, and SNW200, respectively. After fermenting for 72 h, GABA production increased to 29.5 ± 1.1 and 24.9 ± 0.7 g/l in SNW201 and SNW202, respectively, which was significantly higher than that in SNW200 (19.4 ± 2.6 g/l). The GABA conversion ratios of SNW201 and SNW202 reached 0.98 and 0.96 mol/mol, respectively. CONCLUSION The recombinant strains SNW201 and SNW202 can be used as candidates for GABA production.
Collapse
Affiliation(s)
- Nannan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China,
| | | | | |
Collapse
|
44
|
Qin T, Hu X, Hu J, Wang X. Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce L-methionine. Biotechnol Appl Biochem 2014; 62:563-73. [PMID: 25196586 DOI: 10.1002/bab.1290] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/01/2014] [Indexed: 11/09/2022]
Abstract
L-Methionine-producing strain QW102/pJYW-4-hom(m) -lysC(m) -brnFE was developed from Corynebacterium glutamicum strain ATCC13032, using metabolic engineering strategies. These strategies involved (i) deletion of the gene thrB encoding homoserine kinase to increase the precursor supply, (ii) deletion of the gene mcbR encoding the regulator McbR to release the transcriptional repression to various genes in the l-methionine biosynthetic pathway, (iii) overexpression of the gene lysC(m) encoding feedback-resistant aspartate kinase and the gene hom(m) encoding feedback-resistant homoserine dehydrogenase to further increase the precursor supply, and (iv) overexpression of the gene cluster brnF and brnE encoding the export protein complex BrnFE to increase extracellular l-methionine concentration. QW102/pJYW-4-hom(m) -lysC(m) -brnFE produced 42.2 mM (6.3 g/L) l-methionine after 64-H fed-batch fermentation. These results suggest that l-methionine-producing strains can be developed from wild-type C. glutamicum strains by rationally metabolic engineering.
Collapse
Affiliation(s)
- Tianyu Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Jinyu Hu
- School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
45
|
Hu J, Li Y, Zhang H, Tan Y, Wang X. Construction of a novel expression system for use in Corynebacterium glutamicum. Plasmid 2014; 75:18-26. [DOI: 10.1016/j.plasmid.2014.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/15/2014] [Accepted: 07/29/2014] [Indexed: 11/16/2022]
|