1
|
Qin C, Xiang Y, Liu J, Zhang R, Liu Z, Li T, Sun Z, Ouyang X, Zong Y, Zhang HM, Ouyang Q, Qian L, Lou C. Precise programming of multigene expression stoichiometry in mammalian cells by a modular and programmable transcriptional system. Nat Commun 2023; 14:1500. [PMID: 36932109 PMCID: PMC10023750 DOI: 10.1038/s41467-023-37244-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Context-dependency of mammalian transcriptional elements has hindered the quantitative investigation of multigene expression stoichiometry and its biological functions. Here, we describe a host- and local DNA context-independent transcription system to gradually fine-tune single and multiple gene expression with predictable stoichiometries. The mammalian transcription system is composed of a library of modular and programmable promoters from bacteriophage and its cognate RNA polymerase (RNAP) fused to a capping enzyme. The relative expression of single genes is quantitatively determined by the relative binding affinity of the RNAP to the promoters, while multigene expression stoichiometry is predicted by a simple biochemical model with resource competition. We use these programmable and modular promoters to predictably tune the expression of three components of an influenza A virus-like particle (VLP). Optimized stoichiometry leads to a 2-fold yield of intact VLP complexes. The host-independent orthogonal transcription system provides a platform for dose-dependent control of multiple protein expression which may be applied for advanced vaccine engineering, cell-fate programming and other therapeutic applications.
Collapse
Affiliation(s)
- Chenrui Qin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
- Peking-Tsinghua Joint Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Yanhui Xiang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Jie Liu
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Ruilin Zhang
- Yuanpei College, Peking University, 100871, Beijing, China
| | - Ziming Liu
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Tingting Li
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Zhi Sun
- College of Life Science, University of Chinese Academy of Science, 100149, Beijing, China
| | - Xiaoyi Ouyang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | | | | | - Qi Ouyang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Long Qian
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| | - Chunbo Lou
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- College of Life Science, University of Chinese Academy of Science, 100149, Beijing, China.
| |
Collapse
|
2
|
Mansouri M, Ehsaei Z, Taylor V, Berger P. Baculovirus-based genome editing in primary cells. Plasmid 2017; 90:5-9. [PMID: 28119062 DOI: 10.1016/j.plasmid.2017.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 12/27/2022]
Abstract
Genome editing in eukaryotes became easier in the last years with the development of nucleases that induce double strand breaks in DNA at user-defined sites. CRISPR/Cas9-based genome editing is currently one of the most powerful strategies. In the easiest case, a nuclease (e.g. Cas9) and a target defining guide RNA (gRNA) are transferred into a target cell. Non-homologous end joining (NHEJ) repair of the DNA break following Cas9 cleavage can lead to inactivation of the target gene. Specific repair or insertion of DNA with Homology Directed Repair (HDR) needs the simultaneous delivery of a repair template. Recombinant Lentivirus or Adenovirus genomes have enough capacity for a nuclease coding sequence and the gRNA but are usually too small to also carry large targeting constructs. We recently showed that a baculovirus-based multigene expression system (MultiPrime) can be used for genome editing in primary cells since it possesses the necessary capacity to carry the nuclease and gRNA expression constructs and the HDR targeting sequences. Here we present new Acceptor plasmids for MultiPrime that allow simplified cloning of baculoviruses for genome editing and we show their functionality in primary cells with limited life span and induced pluripotent stem cells (iPS).
Collapse
Affiliation(s)
- Maysam Mansouri
- Paul Scherrer Institute, Biomolecular Research, Molecular Cell Biology, CH-5232 Villigen, Switzerland; ETH Zürich, Department of Biology, CH-8093 Zürich, Switzerland
| | - Zahra Ehsaei
- University of Basel, Department of Biomedicine, CH-4058 Basel, Switzerland
| | - Verdon Taylor
- University of Basel, Department of Biomedicine, CH-4058 Basel, Switzerland
| | - Philipp Berger
- Paul Scherrer Institute, Biomolecular Research, Molecular Cell Biology, CH-5232 Villigen, Switzerland.
| |
Collapse
|
3
|
Mansouri M, Bellon-Echeverria I, Rizk A, Ehsaei Z, Cianciolo Cosentino C, Silva CS, Xie Y, Boyce FM, Davis MW, Neuhauss SCF, Taylor V, Ballmer-Hofer K, Berger I, Berger P. Highly efficient baculovirus-mediated multigene delivery in primary cells. Nat Commun 2016; 7:11529. [PMID: 27143231 PMCID: PMC4857464 DOI: 10.1038/ncomms11529] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022] Open
Abstract
Multigene delivery and subsequent cellular expression is emerging as a key technology required in diverse research fields including, synthetic and structural biology, cellular reprogramming and functional pharmaceutical screening. Current viral delivery systems such as retro- and adenoviruses suffer from limited DNA cargo capacity, thus impeding unrestricted multigene expression. We developed MultiPrime, a modular, non-cytotoxic, non-integrating, baculovirus-based vector system expediting highly efficient transient multigene expression from a variety of promoters. MultiPrime viruses efficiently transduce a wide range of cell types, including non-dividing primary neurons and induced-pluripotent stem cells (iPS). We show that MultiPrime can be used for reprogramming, and for genome editing and engineering by CRISPR/Cas9. Moreover, we implemented dual-host-specific cassettes enabling multiprotein expression in insect and mammalian cells using a single reagent. Our experiments establish MultiPrime as a powerful and highly efficient tool, to deliver multiple genes for a wide range of applications in primary and established mammalian cells. Current viral gene delivery systems are limited in the amount of foreign DNA they can deliver to cells. Here the authors develop MultiPrime, a baculovirus-based vector system capable of multigene delivery into a wide variety of cells, and use Multiprime for genome engineering by CRISPR/Cas9.
Collapse
Affiliation(s)
- Maysam Mansouri
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Itxaso Bellon-Echeverria
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, B.P. 181, 38042 Grenoble Cedex 9, France
| | - Aurélien Rizk
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Zahra Ehsaei
- Department of Biomedicine, University of Basel, CH-4058 Basel, Switzerland
| | | | - Catarina S Silva
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, B.P. 181, 38042 Grenoble Cedex 9, France
| | - Ye Xie
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Frederick M Boyce
- Department of Neurology, Massachusetts General Hospital, Cambridge, Massachusetts 02139, USA
| | - M Wayne Davis
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah 84112-0840, USA
| | - Stephan C F Neuhauss
- Institute of Molecular Life Sciences, University of Zürich, CH-8057 Zürich, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, CH-4058 Basel, Switzerland
| | - Kurt Ballmer-Hofer
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Imre Berger
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, B.P. 181, 38042 Grenoble Cedex 9, France.,School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Philipp Berger
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| |
Collapse
|
4
|
Dalal J, Yalamanchili R, La Hovary C, Ji M, Rodriguez-Welsh M, Aslett D, Ganapathy S, Grunden A, Sederoff H, Qu R. A novel gateway-compatible binary vector series (PC-GW) for flexible cloning of multiple genes for genetic transformation of plants. Plasmid 2015; 81:55-62. [DOI: 10.1016/j.plasmid.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022]
|
5
|
De Giorgi M, Cinti A, Pelikant-Malecka I, Chisci E, Lavitrano M, Giovannoni R, Smolenski RT. Co-expression of functional human Heme Oxygenase 1, Ecto-5′-Nucleotidase and ecto-nucleoside triphosphate diphosphohydrolase-1 by “self-cleaving” 2A peptide system. Plasmid 2015; 79:22-9. [DOI: 10.1016/j.plasmid.2015.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 11/26/2022]
|