1
|
Gajdošová Z, Šlenker M, Svitok M, Šrámková G, Blanár D, Cetlová V, Kučera J, Turisová I, Turis P, Slovák M. Unravelling some factors affecting sexual reproduction in rock-specialist shrub: Insight from an endemic Daphne arbuscula (Thymelaeaceae). PLoS One 2024; 19:e0300819. [PMID: 38722920 PMCID: PMC11081377 DOI: 10.1371/journal.pone.0300819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/05/2024] [Indexed: 05/13/2024] Open
Abstract
The role of endemic species in global biodiversity is pivotal, and understanding their biology and ecology is imperative for their fitness and long-term survival, particularly in the face of ongoing climatic oscillations. Our primary goal was to investigate the sexual reproduction level of the endangered Western Carpathian endemic Daphne arbuscula (Thymelaeaceae), which inhabits extreme rocky habitats, and to comprehend the influence of specific factors on its reproductive success. We conducted the research across four populations, varying in size and environmental conditions. Over two years, we monitored flower and fruit production, analyzed genetic variability within and among populations, and studied pollination mechanisms. Daphne arbuscula proved to be strictly self-incompatible, with significant variations in flower and fruit production among populations and seasons. The average fruit production percentage consistently remained below 50% across populations, indicating challenges in sexual reproduction. Cold and harsh weather during the reproductive phase had a substantial negative impact on sexual reproduction efficacy, leading to decreased fruit production. Nevertheless, several individuals in sheltered microhabitats displayed significantly higher fruit production, ranging from 60% to 83%, emphasizing the critical role of microhabitat heterogeneity in sustaining sexual reproduction in this species. We found no pronounced differences in genetic diversity within or among populations, suggesting that genetic factors may not critically influence the reproductive success of this endemic species. The implications of our findings might be of paramount importance for the long-term survival of D. arbuscula and offer valuable insights for the development of effective conservation strategies for this species.
Collapse
Affiliation(s)
- Zuzana Gajdošová
- Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Marek Šlenker
- Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Marek Svitok
- Department of Biology and General Ecology, Technical University in Zvolen, Zvolen, Slovak Republic
- Department of Forest Ecology, Czech University of Life Sciences Prague, Suchdol, Praha, Czech Republic
| | | | - Drahoš Blanár
- Muránska planina National Park Administration, Muráň, Slovak Republic
| | - Veronika Cetlová
- Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jaromír Kučera
- Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Ingrid Turisová
- Department of Biology, Ecology and Environment, Matej Bel University in Banská Bystrica, Banská Bystrica, Slovak Republic
| | - Peter Turis
- Department of Biology, Ecology and Environment, Matej Bel University in Banská Bystrica, Banská Bystrica, Slovak Republic
| | - Marek Slovák
- Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Botany, Charles University, Praha, Czech Republic
| |
Collapse
|
2
|
Cai L, Liu D, Yang F, Zhang R, Yun Q, Dao Z, Ma Y, Sun W. The chromosome-scale genome of Magnolia sinica (Magnoliaceae) provides insights into the conservation of plant species with extremely small populations (PSESP). Gigascience 2024; 13:giad110. [PMID: 38206588 PMCID: PMC10999834 DOI: 10.1093/gigascience/giad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/28/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024] Open
Abstract
Magnolia sinica (Magnoliaceae) is a highly threatened tree endemic to southeast Yunnan, China. In this study, we generated for the first time a high-quality chromosome-scale genome sequence from M. sinica, by combining Illumina and ONT data with Hi-C scaffolding methods. The final assembled genome size of M. sinica was 1.84 Gb, with a contig N50 of ca. 45 Mb and scaffold N50 of 92 Mb. Identified repeats constituted approximately 57% of the genome, and 43,473 protein-coding genes were predicted. Phylogenetic analysis shows that the magnolias form a sister clade with the eudicots and the order Ceratophyllales, while the monocots are sister to the other core angiosperms. In our study, a total of 21 individuals from the 5 remnant populations of M. sinica, as well as 22 specimens belonging to 8 related Magnoliaceae species, were resequenced. The results showed that M. sinica had higher genetic diversity (θw = 0.01126 and θπ = 0.01158) than other related species in the Magnoliaceae. However, population structure analysis suggested that the genetic differentiation among the 5 M. sinica populations was very low. Analyses of the demographic history of the species using different models consistently revealed that 2 bottleneck events occurred. The contemporary effective population size of M. sinica was estimated to be 10.9. The different patterns of genetic loads (inbreeding and numbers of deleterious mutations) suggested constructive strategies for the conservation of these 5 different populations of M. sinica. Overall, this high-quality genome will be a valuable genomic resource for conservation of M. sinica.
Collapse
Affiliation(s)
- Lei Cai
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Detuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Fengmao Yang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Rengang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Quanzheng Yun
- Department of Bioinformatics, Ori (Shandong) Gene Science and Technology Co., Ltd., Weifang, 261000, Shandong, China
| | - Zhiling Dao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
3
|
Xu Y, Zang R. Conservation of rare and endangered plant species in China. iScience 2023; 26:106008. [PMID: 36798437 PMCID: PMC9926111 DOI: 10.1016/j.isci.2023.106008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rare and endangered plant species (REPs) are facing high danger of extinction, yet a comprehensive and up-to-date review on their conservation in China is still lacking. This paper systematically collected studies and achievements on REPs conservation, including species surveys and monitoring, cause of endangerment, in situ conservation, ex situ conservation, reintroduction, propagation, conservation legislation, public participation, progress in conservation of wild plant with extremely small populations, and progress in China's implementation of the Convention on Biological Diversity. Although enormous advances have been made in conservation policies and legislations, protection systems, and research, as well as public education and international collaborations, the conservation efficiency is still restricted largely by the conflict between economic growth and biodiversity conservation in China. In order to meet its commitments to the new Post-2020 Global Biodiversity Framework, more work on basic investigation and long-term observation, as well as advanced technologies and application-oriented research on REPs should be carried out.
Collapse
Affiliation(s)
- Yue Xu
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Runguo Zang
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Xie H, Zhang L, Zhang C, Chang H, Xi Z, Xu X. Comparative analysis of the complete chloroplast genomes of six threatened subgenus Gynopodium (Magnolia) species. BMC Genomics 2022; 23:716. [PMID: 36261795 PMCID: PMC9583488 DOI: 10.1186/s12864-022-08934-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The subgenus Gynopodium belonging to genus Magnolia have high ornamental, economic, and ecological value. Subgenus Gynopodium contains eight species, but six of these species are threatened. No studies to date have characterized the characteristics of the chloroplast genomes (CPGs) within subgenus Gynopodium species. In this study, we compared the structure of CPGs, identified the mutational hotspots and resolved the phylogenetic relationship of subgenus Gynopodium. RESULTS The CPGs of six subgenus Gynopodium species ranged in size from 160,027 bp to 160,114 bp. A total of 131 genes were identified, including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. We detected neither major expansions or contractions in the inverted repeat region, nor rearrangements or insertions in the CPGs of six subgenus Gynopodium species. A total of 300 large repeat sequences (forward, reverse, and palindrome repeats), 847 simple sequence repeats, and five highly variable regions were identified. One gene (ycf1) and four intergenic regions (psbA-trnH-GUG, petA-psbJ, rpl32-trnL-UAG, and ccsA-ndhD) were identified as mutational hotspots by their high nucleotide diversity (Pi) values (≥ 0.004), which were useful for species discrimination. Maximum likelihood and Bayesian inference trees were concordant and indicated that Magnoliaceae consisted of two genera Liriodendron and Magnolia. Six species of subgenus Gynopodium clustered as a monophyletic clade, forming a sister clade with subgenus Yulania (BS = 100%, PP = 1.00). Due to the non-monophyly of subgenus Magnolia, subgenus Gynopodium should be treated as a section of Magnolia. Within section Gynopodium, M. sinica diverged first (posterior probability = 1, bootstrap = 100), followed by M. nitida, M. kachirachirai and M. lotungensis. M. omeiensis was sister to M. yunnanensis (posterior probability = 0.97, bootstrap = 50). CONCLUSION The CPGs and characteristics information provided by our study could be useful in species identification, conservation genetics and resolving phylogenetic relationships of Magnoliaceae species.
Collapse
Affiliation(s)
- Huanhuan Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lei Zhang
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People's Republic of China, College of Biological Science & Engineering, North Minzu University, Yinchuan, 750021, China
| | - Cheng Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hong Chang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xiaoting Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
5
|
Su DF, Shen QQ, Yang JY, Li ZY, Xiao W, Wang YX, Ding ZG, Cui XL. Comparison of the Bulk and Rhizosphere Soil Prokaryotic Communities Between Wild and Reintroduced Manglietiastrum sinicum Plants, a Threatened Species with Extremely Small Populations. Curr Microbiol 2021; 78:3877-3890. [PMID: 34510225 DOI: 10.1007/s00284-021-02653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Abstract
Huagaimu (Manglietiastrum sinicum) trees are critically endangered species and classified as a plant species with extremely small populations in China. Rhizospheres and bulk soils prokaryotic communities play an important role to protect and promote plants health and growth. However, the compositions and structures of prokaryotic communities in wild and reintroduced M. sinicum rhizospheres and bulk soils are still poorly understood. In the present study, prokaryotic communities in wild and reintroduced M. sinicum rhizospheres and bulk soils were compared using high-throughput sequencing. Thirty-two phyla, 76 classes, 193 orders, 296 families, and 470 genera of prokaryotes were obtained. Proteobacteria and Acidobacteria were the two most abundant phyla in all soil samples. The compositions and structures of prokaryotic communities were overall similar, and the abundance of some taxa varied significantly among soil samples. Soil prokaryotic communities were significantly affected by soil pH, total nitrogen, total phosphorus, and total potassium. Eleven of predicted functions were significantly different among the four soil groups. This study provides for the first insights into the compositions, structures, and potential functions of prokaryotic communities associated with wild and reintroduced M. sinicum rhizospheres and bulk soils, and providing a foundation for future research to help protect this endangered species.
Collapse
Affiliation(s)
- Dai-Fa Su
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Qing-Qing Shen
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China.,School of Sanqi Medicine, Wenshan University, Wenshan, 663099, Yunnan, People's Republic of China
| | - Jun-Yu Yang
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Zhi-Ying Li
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Wei Xiao
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Yong-Xia Wang
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Zhang-Gui Ding
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Xiao-Long Cui
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China. .,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China.
| |
Collapse
|
6
|
Fan XR, Wagutu GK, Wen XY, Chen SL, Liu YL, Chen YY. Decreasing genetic connectivity in the endangered tree Magnolia patungensis in fragmented forests. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
7
|
Comparative Analysis of Fungal Diversity in Rhizospheric Soil from Wild and Reintroduced Magnolia sinica Estimated via High-Throughput Sequencing. PLANTS 2020; 9:plants9050600. [PMID: 32397167 PMCID: PMC7284792 DOI: 10.3390/plants9050600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 11/17/2022]
Abstract
Magnolia sinica is a critically endangered species and considered a “plant species with extremely small populations” (PSESP). It is an endemic species in southeastern Yunnan Province, China, with reproductive barriers. Rhizosphere fungi play a crucial role in plant growth and health. However, the composition, diversity, and function of fungal communities in wild and reintroduced M. sinica rhizospheres remain unknown. In this study, Illumina sequencing of the internal transcribed spacer 2 (ITS2) region was used to analyze rhizospheric soil samples from wild and reintroduced M. sinica. Thirteen phyla, 45 classes, 105 orders, 232 families, and 433 genera of fungi were detected. Basidiomycota and Ascomycota were dominant across all samples. The fungal community composition was similar between the wild and reintroduced rhizospheres, but the fungal taxa relative abundances differed. The fungal community richness was higher in the reintroduced rhizosphere than in the wild rhizosphere, but the diversity showed the opposite pattern. Soil nutrients and leaf litter significantly affected the fungal community composition and functional diversity. Here, the composition, structure, diversity, and ecological functions of the fungal communities in the rhizospheres of wild and reintroduced M. sinica were elucidated for the first time, laying a foundation for future research and endangered species protection.
Collapse
|
8
|
Song E, Park S, Sun W, Kim S. Complete chloroplast genome sequence of Magnolia sinica (Y.W.Law) Noot. (magnoliaceae), A critically endangered species with extremely small populations in Magnoliaceae. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2018.1546141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Eunji Song
- Department of Biology, Sungshin University, Seoul, Korea
| | - Suhyeon Park
- Department of Biology, Sungshin University, Seoul, Korea
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Sangtae Kim
- Department of Biology, Sungshin University, Seoul, Korea
| |
Collapse
|