1
|
Schnittler M, Inoue M, Shchepin ON, Fuchs J, Chang H, Lamkowski P, Knapp R, Horn K, Bennert HW, Bog M. Hybridization and reticulate evolution in Diphasiastrum (flat-branched clubmosses, Lycopodiaceae) - New data from the island of Taiwan and Vietnam. Mol Phylogenet Evol 2024; 196:108067. [PMID: 38561082 DOI: 10.1016/j.ympev.2024.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
In the species groups related to Diphasiastrum multispicatum and D. veitchii, hybridization was investigated in samples from northern and southern Vietnam and the island of Taiwan, including available herbarium specimens from southeast Asia. The accessions were analyzed using flow cytometry (living material only), Sanger sequencing and multiplexed inter-simple sequence repeat genotyping by sequencing. We detected two cases of ancient hybridization involving different combinations of parental species; both led via subsequent duplication to tetraploid taxa. A cross D. multispicatum × D. veitchii from Malaysia represents D. wightianum, a tetraploid taxon according to reported DNA content measurements of dried material (genome formulas MM, VV and MMVV, respectively). The second case involves D. veitchii and an unknown diploid parent (genome formula XX). Three hybridogenous taxa (genome formulas VVX, VVXX, VVVX) were discernable by a combination of flow cytometry and molecular data. Taxon I (VVX, three clones found on Taiwan island) is apparently triploid. Taxon II represents another genetically diverse and sexual tetraploid species (VVXX) and can be assigned to D. yueshanense, described from Taiwan island but occurring as well in mainland China and Vietnam. Taxon III is as well most likely tetraploid (VVVX) and represented by at least one, more likely two, clones from Taiwan island. Taxa I and III are presumably asexual and new to science. Two independently inherited nuclear markers recombine only within, not between these hybrids, pointing towards reproductive isolation. We present an evolutionary scheme which explains the origin of the hybrids and the evolution of new and fully sexual species by hybridization and subsequent allopolyploidization in flat-branched clubmosses.
Collapse
Affiliation(s)
- M Schnittler
- Institute of Botany and Landscape Ecology, Ernst Moritz Arndt University of Greifswald, Soldmannstraße 15, D-17487 Greifswald, Germany
| | - M Inoue
- Institute of Botany and Landscape Ecology, Ernst Moritz Arndt University of Greifswald, Soldmannstraße 15, D-17487 Greifswald, Germany
| | - O N Shchepin
- Institute of Botany and Landscape Ecology, Ernst Moritz Arndt University of Greifswald, Soldmannstraße 15, D-17487 Greifswald, Germany
| | - J Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Stadt Seeland, D-06466 OT Gatersleben, Germany
| | - H Chang
- Division of Botany, Endemic Species Research Institute, 1, Ming Seng E. Road, Jiji, Nantou 552, Taiwan, ROC
| | - P Lamkowski
- Nature Conservation and Land Use Planning, University of Applied Sciences Neubrandenburg, Brodaer Straße 2, D-17033 Neubrandenburg, Germany
| | - R Knapp
- Steigestraße 78, D-69412 Eberbach, Germany
| | - K Horn
- Büro für angewandte Geobotanik und Landschaftsökologie (BaGL), Frankenstraße 2, D-91077 Dormitz, Germany
| | - H W Bennert
- Evolution and Biodiversity of Plants, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - M Bog
- Institute of Botany and Landscape Ecology, Ernst Moritz Arndt University of Greifswald, Soldmannstraße 15, D-17487 Greifswald, Germany.
| |
Collapse
|
2
|
Almeida TE, Santos Leal BS. Recurrent allopolyploidy and its implications for conservation in vascular plants: a commentary on 'Population genomics of the Isoetes appalachiana (Isoetaceae) complex supports a "diploids-first" approach to conservation'. ANNALS OF BOTANY 2024; 133:i-ii. [PMID: 38183619 PMCID: PMC11005762 DOI: 10.1093/aob/mcad201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
This article comments on:
David Wickell, Jacob Landis, Elizabeth Zimmer and Fay-Wei Li, Population genomics of the Isoetes appalachiana (Isoetaceae) complex supports a ‘diploids-first’ approach to conservation, Annals of Botany, Volume 133, Issue 2, 01 February 2024, Pages 261–272, https://doi.org/10.1093/aob/mcad180
Collapse
Affiliation(s)
- Thaís Elias Almeida
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Botânica, Avenida Professor Moraes Rego – 1235, 50.670-420, Recife, PE, Brazil
| | - Bárbara Simões Santos Leal
- Instituto Tecnológico Vale Desenvolvimento Sustentável, Grupo de Biodiversidade e Serviços Ecossistêmicos, Rua Boaventura da Silva – 955, 66.055-090, Belém, PA, Brazil
| |
Collapse
|
3
|
Koubínová D, GoFlag Consortium, Grant JR. Microsatellite Content in 397 Nuclear Exons and Their Flanking Regions in the Fern Family Ophioglossaceae. PLANTS (BASEL, SWITZERLAND) 2024; 13:713. [PMID: 38475562 DOI: 10.3390/plants13050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 03/14/2024]
Abstract
Microsatellites or SSRs are small tandem repeats that are 1-6 bp long. They are usually highly polymorphic and form important portions of genomes. They have been extensively analyzed in humans, animals and model plants; however, information from non-flowering plants is generally lacking. Here, we examined 29 samples of Ophioglossaceae ferns, mainly from the genera Botrychium and Sceptridium. We analyzed the SSR distribution, density and composition in almost 400 nuclear exons and their flanking regions. We detected 45 SSRs in exons and 1475 SSRs in the flanking regions. In the exons, only di-, tri- and tetranucleotides were found, and all of them were 12 bp long. The annotation of the exons containing SSRs showed that they were related to various processes, such as metabolism, catalysis, transportation or plant growth. The flanking regions contained SSRs from all categories, with the most numerous being dinucleotides, followed by tetranucleotides. More than one-third of all the SSRs in the flanking regions were 12 bp long. The SSR densities in the exons were very low, ranging from 0 to 0.07 SSRs/kb, while those in the flanking regions ranged from 0.24 to 0.81 SSRs/kb; and those in the combined dataset ranged from 0.2 to 0.81 SSRs/kb. The majority of the detected SSRs in the flanking regions were polymorphic and present at the same loci across two or more samples but differing in the number of repeats. The SSRs detected here may serve as a basis for further population genetic, phylogenetic or evolutionary genetic studies, as well as for further studies focusing on SSRs in the genomes and their roles in adaptation, evolution and diseases.
Collapse
Affiliation(s)
- Darina Koubínová
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland
| | - GoFlag Consortium
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland
| | - Jason R Grant
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
4
|
Lin JX, Ali A, Chu N, Fu HY, Huang MT, Mbuya SN, Gao SJ, Zhang HL. Identification of ARF transcription factor gene family and its defense responses to bacterial infection and salicylic acid treatment in sugarcane. Front Microbiol 2023; 14:1257355. [PMID: 37744907 PMCID: PMC10513436 DOI: 10.3389/fmicb.2023.1257355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Auxin response factor (ARF) is a critical regulator in the auxin signaling pathway, involved in a variety of plant biological processes. Here, gene members of 24 SpapARFs and 39 SpnpARFs were identified in two genomes of Saccharum spontaneum clones AP85-441 and Np-X, respectively. Phylogenetic analysis showed that all ARF genes were clustered into four clades, which is identical to those ARF genes in maize (Zea mays) and sorghum (Sorghum bicolor). The gene structure and domain composition of this ARF family are conserved to a large degree across plant species. The SpapARF and SpnpARF genes were unevenly distributed on chromosomes 1-8 and 1-10 in the two genomes of AP85-441 and Np-X, respectively. Segmental duplication events may also contribute to this gene family expansion in S. spontaneum. The post-transcriptional regulation of ARF genes likely involves sugarcane against various stressors through a miRNA-medicated pathway. Expression levels of six representative ShARF genes were analyzed by qRT-PCR assays on two sugarcane cultivars [LCP85-384 (resistant to leaf scald) and ROC20 (susceptible to leaf scald)] triggered by Acidovorax avenae subsp. avenae (Aaa) and Xanthomonas albilineans (Xa) infections and salicylic acid (SA) treatment. ShARF04 functioned as a positive regulator under Xa and Aaa stress, whereas it was a negative regulator under SA treatment. ShARF07/17 genes played positive roles against both pathogenic bacteria and SA stresses. Additionally, ShARF22 was negatively modulated by Xa and Aaa stimuli in both cultivars, particularly LCP85-384. These findings imply that sugarcane ARFs exhibit functional redundancy and divergence against stressful conditions. This work lays the foundation for further research on ARF gene functions in sugarcane against diverse environmental stressors.
Collapse
Affiliation(s)
- Jia-Xin Lin
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Na Chu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sylvain Ntambo Mbuya
- Faculté des Sciences Agronomiques, Département de production végétale, Laboratoire de Recherche en Biofortification, Defense et Valorisation des Cultures (BioDev), Université de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui-Li Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Yu JG, Tang JY, Wei R, Lan MF, Xiang RC, Zhang XC, Xiang QP. The first homosporous lycophyte genome revealed the association between the recent dynamic accumulation of LTR-RTs and genome size variation. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01366-0. [PMID: 37380791 DOI: 10.1007/s11103-023-01366-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
The contrasting genome size between homosporous and heterosporous plants is fascinating. Different from the heterosporous seed plants and mainly homosporous ferns, the lycophytes are either heterosporous (Isoetales and Selaginellales) or homosporous (Lycopodiales). Many lycophytes are the resource plants of Huperzine A (HupA) which is invaluable for treating Alzheimer's disease. For the seed-free vascular plants, several high-quality genomes of heterosporous Selaginella, homosporous ferns (maidenhair fern, monkey spider tree fern), and heterosporous ferns (Azolla) have been published and provided important insights into the origin and evolution of early land plants. However, the homosporous lycophyte genome has not been decoded. Here, we assembled the first homosporous lycophyte genome and conducted comparative genomic analyses by applying a reformed pipeline for filtering out non-plant sequences. The obtained genome size of Lycopodium clavatum is 2.30 Gb, distinguished in more than 85% repetitive elements of which 62% is long terminal repeat (LTR). This study disclosed a high birth rate and a low death rate of the LTR-RTs in homosporous lycophytes, but the opposite occurs in heterosporous lycophytes. we propose that the recent activity of LTR-RT is responsible for the immense genome size variation between homosporous and heterosporous lycophytes. By combing Ks analysis with a phylogenetic approach, we discovered two whole genome duplications (WGD). Morover, we identified all the five recognized key enzymes for the HupA biosynthetic pathway in the L. clavatum genome, but found this pathway incomplete in other major lineages of land plants. Overall, this study is of great importance for the medicinal utilization of lycophytes and the decoded genome data will be a key cornerstone to elucidate the evolution and biology of early vascular land plants.
Collapse
Affiliation(s)
- Ji-Gao Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, China
| | - Jun-Yong Tang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, China
| | - Ran Wei
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, China
| | - Mei-Fang Lan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, China
| | - Rui-Chen Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Xian-Chun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, China.
| | - Qiao-Ping Xiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, China.
| |
Collapse
|
6
|
Chen H, Fang Y, Zwaenepoel A, Huang S, Van de Peer Y, Li Z. Revisiting ancient polyploidy in leptosporangiate ferns. THE NEW PHYTOLOGIST 2023; 237:1405-1417. [PMID: 36349406 PMCID: PMC7614084 DOI: 10.1111/nph.18607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/30/2022] [Indexed: 05/31/2023]
Abstract
Ferns, and particularly homosporous ferns, have long been assumed to have experienced recurrent whole-genome duplication (WGD) events because of their substantially large genome sizes, surprisingly high chromosome numbers, and high degrees of polyploidy among many extant members. As the number of sequenced fern genomes is limited, recent studies have employed transcriptome data to find evidence for WGDs in ferns. However, they have reached conflicting results concerning the occurrence of ancient polyploidy, for instance, in the lineage of leptosporangiate ferns. Because identifying WGDs in a phylogenetic context is the foremost step in studying the contribution of ancient polyploidy to evolution, we here revisited earlier identified WGDs in leptosporangiate ferns, mainly the core leptosporangiate ferns, by building KS -age distributions and applying substitution rate corrections and by conducting statistical gene tree-species tree reconciliation analyses. Our integrative analyses not only identified four ancient WGDs in the sampled core leptosporangiate ferns but also identified false positives and false negatives for WGDs that recent studies have reported earlier. In conclusion, we underscore the significance of substitution rate corrections and uncertainties in gene tree-species tree reconciliations in calling WGD events and advance an exemplar workflow to overcome such often-overlooked issues.
Collapse
Affiliation(s)
- Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Yuhan Fang
- Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sanwen Huang
- Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
7
|
Pellicer J. Uncovering the influence of genomic traits in shaping land plant diversity. A commentary on 'Are chromosome number and genome size associated with habit and environmental niche variables? Insights from the Neotropical orchids'. ANNALS OF BOTANY 2022; 130:i-iii. [PMID: 35699527 PMCID: PMC9295919 DOI: 10.1093/aob/mcac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|