1
|
Demey LM, Gumerov VM, Xing J, Zhulin IB, DiRita VJ. Transmembrane Transcription Regulators Are Widespread in Bacteria and Archaea. Microbiol Spectr 2023; 11:e0026623. [PMID: 37154724 PMCID: PMC10269533 DOI: 10.1128/spectrum.00266-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
To adapt and proliferate, bacteria must sense and respond to the ever-changing environment. Transmembrane transcription regulators (TTRs) are a family of one-component transcription regulators that respond to extracellular information and influence gene expression from the cytoplasmic membrane. How TTRs function to modulate expression of their target genes while localized to the cytoplasmic membrane remains poorly understood. In part, this is due to a lack of knowledge regarding the prevalence of TTRs among prokaryotes. Here, we show that TTRs are highly diverse and prevalent throughout bacteria and archaea. Our work demonstrates that TTRs are more common than previously appreciated and are enriched within specific bacterial and archaeal phyla and that many TTRs have unique transmembrane region properties that can facilitate association with detergent-resistant membranes. IMPORTANCE One-component signal transduction systems are the major class of signal transduction systems among bacteria and are commonly cytoplasmic. TTRs are a group of unique one-component signal transduction systems that influence transcription from the cytoplasmic membrane. TTRs have been implicated in a wide array of biological pathways critical for both pathogens and human commensal organisms but were considered to be rare. Here, we demonstrate that TTRs are in fact highly diverse and broadly distributed in bacteria and archaea. Our findings suggest that transcription factors can access the chromosome and influence transcription from the membrane in both archaea and bacteria. This study challenges thus the commonly held notion that signal transduction systems require a cytoplasmic transcription factor and highlights the importance of the cytoplasmic membrane in directly influencing signal transduction.
Collapse
Affiliation(s)
- Lucas M. Demey
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Vadim M. Gumerov
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jiawei Xing
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Igor B. Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Victor J. DiRita
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
EPA and DHA differentially modulate membrane elasticity in the presence of cholesterol. Biophys J 2021; 120:2317-2329. [PMID: 33887229 PMCID: PMC8390804 DOI: 10.1016/j.bpj.2021.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/15/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) modify the activity of a wide range of membrane proteins and are increasingly hypothesized to modulate protein activity by indirectly altering membrane physical properties. Among the various physical properties affected by PUFAs, the membrane area expansion modulus (Ka), which measures membrane strain in response to applied force, is expected to be a significant controller of channel activity. Yet, the impact of PUFAs on membrane Ka has not been measured previously. Through a series of micropipette aspiration studies, we measured the apparent Ka (Kapp) of phospholipid model membranes containing nonesterified fatty acids. First, we measured membrane Kapp as a function of the location of the unsaturated bonds and degree of unsaturation in the incorporated fatty acids and found that Kapp generally decreases in the presence of fatty acids with three or more unsaturated bonds. Next, we assessed how select ω-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), affect the Kapp of membranes containing cholesterol. In vesicles prepared with high amounts of cholesterol, which should increase the propensity of the membrane to phase segregate, we found that inclusion of DHA decreases the Kapp in comparison to EPA. We also measured how these ω-3 PUFAs affect membrane fluidity and bending rigidity to determine how membrane Kapp changes in relation to these other physical properties. Our study shows that PUFAs generally decrease the Kapp of membranes and that EPA and DHA have differential effects on Kapp when membranes contain higher levels of cholesterol. Our results suggest membrane phase behavior and the distribution of membrane-elasticizing amphiphiles impact the ability of a membrane to stretch.
Collapse
|
3
|
Lopreiato V, Mezzetti M, Cattaneo L, Ferronato G, Minuti A, Trevisi E. Role of nutraceuticals during the transition period of dairy cows: a review. J Anim Sci Biotechnol 2020; 11:96. [PMID: 32864127 PMCID: PMC7450574 DOI: 10.1186/s40104-020-00501-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
The transition period of dairy cattle is characterized by a number of metabolic, endocrine, physiologic, and immune adaptations, including the occurrence of negative energy balance, hypocalcemia, liver dysfunction, overt systemic inflammatory response, and oxidative stress status. The degree and length of time during which these systems remain out of balance could render cows more susceptible to disease, poor reproductive outcomes, and less efficient for milk production and quality. Studies on both monogastrics and ruminants have reported the health benefits of nutraceuticals (e.g. probiotics, prebiotics, dietary lipids, functional peptides, phytoextracts) beyond nutritional value, interacting at different levels of the animal’s physiology. From a physiological standpoint, it seems unrealistic to disregard any systemic inflammatory processes. However, an alternate approach is to modulate the inflammatory process per se and to resolve the systemic response as quickly as possible. To this aim, a growing body of literature underscores the efficacy of nutraceuticals (active compounds) during the critical phase of the transition period. Supplementation of essential fatty acids throughout a 2-month period (i.e. a month before and a month after calving) successfully attenuates the inflammatory status with a quicker resolution of phenomenon. In this context, the inflammatory and immune response scenario has been recognized to be targeted by the beneficial effect of methyl donors, such as methionine and choline, directly and indirectly modulating such response with the increase of antioxidants GSH and taurine. Indirectly by the establishment of a healthy gastrointestinal tract, yeast and yeast-based products showed to modulate the immune response, mitigating negative effects associated with parturition stress and consequent disorders. The use of phytoproducts has garnered high interest because of their wide range of actions on multiple tissue targets encompassing a series of antimicrobial, antiviral, antioxidant, immune-stimulating, rumen fermentation, and microbial modulation effects. In this review, we provide perspectives on investigations of regulating the immune responses and metabolism using several nutraceuticals in the periparturient cow.
Collapse
Affiliation(s)
- Vincenzo Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Luca Cattaneo
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Giulia Ferronato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Andrea Minuti
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.,PRONUTRIGEN-Centro di Ricerca Nutrigenomica e Proteomica, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.,PRONUTRIGEN-Centro di Ricerca Nutrigenomica e Proteomica, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
4
|
Mezzetti M, Bionaz M, Trevisi E. Interaction between inflammation and metabolism in periparturient dairy cows. J Anim Sci 2020; 98:S155-S174. [PMID: 32810244 DOI: 10.1093/jas/skaa134] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Matteo Mezzetti
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
5
|
|
6
|
Singh VK, Singh SK, Tripathi AK, Nakade UP, Choudhury S, Yadav B, Garg SK. Evaluation of immuno-regulatory cytokines and negative energy balance markers drift of zebu cows during the transition period. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1583505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Vivek K. Singh
- Department of Veterinary Medicine, U.P. Pt. Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, UP, India
| | - Shanker K. Singh
- Department of Veterinary Medicine, U.P. Pt. Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, UP, India
| | - Arvind K. Tripathi
- Department of Veterinary Medicine, U.P. Pt. Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, UP, India
| | - Udayraj P. Nakade
- Department of Pharmacology and Toxicology, U.P. Pt. Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, UP, India
| | - Soumen Choudhury
- Department of Pharmacology and Toxicology, U.P. Pt. Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, UP, India
| | - Brijesh Yadav
- Department of Physiology, College of Veterinary Science and Animal Husbandry, U.P. Pt. Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, UP, India
| | - Satish K. Garg
- Department of Pharmacology and Toxicology, U.P. Pt. Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, UP, India
| |
Collapse
|
7
|
Bühler S, Frahm J, Liermann W, Tienken R, Kersten S, Meyer U, Huber K, Dänicke S. Effects of energy supply and nicotinic acid supplementation on phagocytosis and ROS production of blood immune cells of periparturient primi- and pluriparous dairy cows. Res Vet Sci 2018; 116:62-71. [DOI: 10.1016/j.rvsc.2017.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/31/2017] [Accepted: 09/09/2017] [Indexed: 01/02/2023]
|
8
|
Bühler S, Frahm J, Tienken R, Kersten S, Meyer U, Huber K, Dänicke S. Effects of energy supply and nicotinic acid supplementation on serum anti-oxidative capacity and on expression of oxidative stress-related genes in blood leucocytes of periparturient primi- and pluriparous dairy cows. J Anim Physiol Anim Nutr (Berl) 2017; 102:e87-e98. [DOI: 10.1111/jpn.12705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/02/2017] [Indexed: 12/28/2022]
Affiliation(s)
- S. Bühler
- Institute of Animal Nutrition; Friedrich-Loeffler-Institute (FLI); Federal Research Institute for Animal Health; Braunschweig Germany
| | - J. Frahm
- Institute of Animal Nutrition; Friedrich-Loeffler-Institute (FLI); Federal Research Institute for Animal Health; Braunschweig Germany
| | - R. Tienken
- Institute of Animal Nutrition; Friedrich-Loeffler-Institute (FLI); Federal Research Institute for Animal Health; Braunschweig Germany
| | - S. Kersten
- Institute of Animal Nutrition; Friedrich-Loeffler-Institute (FLI); Federal Research Institute for Animal Health; Braunschweig Germany
| | - U. Meyer
- Institute of Animal Nutrition; Friedrich-Loeffler-Institute (FLI); Federal Research Institute for Animal Health; Braunschweig Germany
| | - K. Huber
- Institute of Animal Sciences; University of Hohenheim; Stuttgart Germany
| | - S. Dänicke
- Institute of Animal Nutrition; Friedrich-Loeffler-Institute (FLI); Federal Research Institute for Animal Health; Braunschweig Germany
| |
Collapse
|
9
|
Bühler S, Frahm J, Tienken R, Kersten S, Meyer U, Huber K, Dänicke S. Influence of energy level and nicotinic acid supplementation on apoptosis of blood leukocytes of periparturient dairy cows. Vet Immunol Immunopathol 2016; 179:36-45. [DOI: 10.1016/j.vetimm.2016.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 01/21/2023]
|
10
|
Abstract
Inflammation-induced inhibition of the insulin signalling pathway can lead to insulin resistance and contribute to the development of type 2 diabetes mellitus (T2DM). Obesity and insulin resistance are associated with a chronic but subclinical inflammatory process that impairs insulin action in most tissues and could also hamper pancreatic β-cell function. The involvement of monocytic cells and the profiles of the chemokines and cytokines induced by this inflammation suggest an innate immune response. However, emerging data indicate that elements of the adaptive immune system could also be involved. As activation of an adaptive response requires antigen specificity, some researchers have hypothesized that T2DM evolves from an innate immune response to an autoimmune condition. In this Perspectives article, we present the arguments for and against this hypothesis and discuss which mechanisms could be involved in a putative switch from innate immunity to autoimmunity.
Collapse
Affiliation(s)
- Lício A Velloso
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Centre, University of Campinas, DCM-FCM UNICAMP, 13,084-970 Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
11
|
Abstract
The large increase in milk yield and the structural changes in the dairy industry have caused major changes in the housing, feeding and management of the dairy cow. However, while large improvements have occurred in production and efficiency, the disease incidence, based on veterinary records, does not seem to be improved. Earlier reviews have covered critical periods such as the transition period in the cow and its influence on health and immune function, the interplay between the endocrine system and the immune system and nutrition and immune function. Knowledge on these topics is crucial for our understanding of disease risk and our effort to develop health and welfare improving strategies, including proactive management for preventing diseases and reducing the severity of diseases. To build onto this the main purpose of this review will therefore be on the effect of physiological imbalance (PI) on immune function, and to give perspectives for prevention of diseases in the dairy cow through nutrition. To a large extent, the health problems during the periparturient period relate to cows having difficulty in adapting to the nutrient needs for lactation. This may result in PI, a situation where the regulatory mechanisms are insufficient for the animals to function optimally leading to a high risk of a complex of digestive, metabolic and infectious problems. The risk of infectious diseases will be increased if the immune competence is reduced. Nutrition plays a pivotal role in the immune response and the effect of nutrition may be directly through nutrients or indirectly by metabolites, for example, in situations with PI. This review discusses the complex relationships between metabolic status and immune function and how these complex interactions increase the risk of disease during early lactation. A special focus will be placed on the major energetic fuels currently known to be used by immune cells (i.e. glucose, non-esterified fatty acids, beta-hydroxybutyrate and glutamine) and how certain metabolic states, such as degree of negative energy balance and risk of PI, contribute to immunosuppression during the periparturient period. Finally, we will address some issues on disease prevention through nutrition.
Collapse
|
12
|
Hogenkamp A, van Vlies N, Fear AL, van Esch BC, Hofman GA, Garssen J, Calder PC. Dietary fatty acids affect the immune system in male mice sensitized to ovalbumin or vaccinated with influenza. J Nutr 2011; 141:698-702. [PMID: 21346107 DOI: 10.3945/jn.110.135863] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PUFA are precursor molecules for eicosanoids such as leukotrienes and prostaglandins and may influence immune function through other mechanisms involving membranes, cell signaling, and gene expression. Immune-modulating properties of diets containing different oils [sunflower oil, rich in linoleic acid; linseed oil, rich in α-linolenic acid; salmon oil, rich in marine (n-3) PUFA; and beef tallow, rich in SFA] were investigated in an influenza-vaccination model, in which the delayed-type hypersensitivity (DTH) response was studied in C57BL/6 mice, and an ovalbumin (OVA)-sensitization model for experimental allergy in BALB/c mice. Six-week-old mice were fed the different diets for 7 wk. The first vaccination or OVA sensitization was given 2 wk after the start of the dietary intervention. In the mice vaccinated with influenza, the DTH response to the vaccine was significantly higher in mice fed the marine (n-3) PUFA diet compared to all other groups, indicating that these PUFA promote a T helper-1 response. In the OVA-sensitized mice, those fed the marine (n-3) PUFA diet had a less severe acute allergic skin response (ASR), suggesting that (n-3) PUFA lessen the T helper-2 response. Mice fed the SFA-rich diet had the most severe ASR, indicating that a diet with high levels of SFA may contribute to increased severity of allergic symptoms. Whereas significant differences in in vivo immune responses were measured, in vitro responses did not differ among the dietary groups. In conclusion, using 2 different models of immune responses demonstrates potential benefits from marine (n-3) PUFA.
Collapse
Affiliation(s)
- Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Perinatal programming of murine immune responses by polyunsaturated fatty acids. J Dev Orig Health Dis 2010; 2:112-23. [DOI: 10.1017/s204017441000067x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Kuang L, Colgrave ML, Bagnall NH, Knox MR, Qian M, Wijffels G. The complexity of the secreted NPA and FAR lipid-binding protein families of Haemonchus contortus revealed by an iterative proteomics-bioinformatics approach. Mol Biochem Parasitol 2009; 168:84-94. [PMID: 19615410 DOI: 10.1016/j.molbiopara.2009.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/06/2009] [Accepted: 07/06/2009] [Indexed: 11/18/2022]
Abstract
Two different classes of small nematode specific lipid-binding proteins, the nematode polyprotein allergens/antigens (NPAs) and the fatty acid- and retinol-binding (FAR) proteins, are secreted by helminth parasites. Until now, there was no evidence of the expression or secretion of these two families of proteins in Haemonchus contortus. In this study, we applied proteomic and bioinformatic tools in an iterative manner to reveal the expression and complexity of these proteins in the excretory/secretory products (ESP) of adult H. contortus at the protein and gene levels. Initial examination of the mass spectra of ESP fractions against standard databases returned nine peptides mapping to Ostertagia ostertagi NPA and FAR sequences. Searches of the H. contortus EST and genomic contig databases with the O. ostertagi and Caenorhabditis elegans homologues retrieved diverse sequences encoding H. contortus NPA and FAR proteins. H. contortus sequences were then integrated into a customized database and a new search of the mass spectra achieved a 10-fold improvement in coverage of the predicted H. contortus NPAs. The final analyses of the mass spectra achieved 49-60% coverage of H. contortus NPAs and 7-47% coverage of H. contortus FARs. Moreover, the diversity in structures of the encoding genes was revealed by assembling the genomic sequence data with predicted protein sequences confirmed by the peptide evidence. We predict there are at least one Hc-NPA gene and six Hc-FAR genes in H. contortus, and life stage gene expression of Hc-FAR-1 to -6 revealed unique transcription patterns for each of these genes.
Collapse
Affiliation(s)
- Lisha Kuang
- CSIRO Livestock Industries, Queensland Biosciences Precinct, 306 Carmody Road, St. Lucia, 4067 QLD, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Kim W, McMurray DN, Chapkin RS. Chemotherapeutic Properties of n-3 Polyunsaturated Fatty Acids - Old Concepts and New Insights. ACTA ACUST UNITED AC 2009; 9:38-44. [PMID: 19823600 DOI: 10.2174/187152209788009841] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Over the past several decades, data from both experimental animal studies and human clinical trials have shown that dietary n-3 polyunsaturated fatty acids (PUFA) exhibit anti-inflammatory bioactive properties, compared to n-6 PUFA. Collectively, these studies have identified multiple mechanisms by which n-3 PUFA affect immune cell responses. In this review, we discuss the putative targets of anti-inflammatory n-3 PUFA, specifically, cytokine production, antagonism of n-6 PUFA metabolism, binding to nuclear receptors as ligands, and the alteration of signaling protein acylation. In addition, we investigate the effect of n-3 PUFA on the coalescence of lipid rafts, specialized signaling platforms in the plasma membrane.
Collapse
Affiliation(s)
- Wooki Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
16
|
Kim W, Fan YY, Barhoumi R, Smith R, McMurray DN, Chapkin RS. n-3 polyunsaturated fatty acids suppress the localization and activation of signaling proteins at the immunological synapse in murine CD4+ T cells by affecting lipid raft formation. THE JOURNAL OF IMMUNOLOGY 2009; 181:6236-43. [PMID: 18941214 DOI: 10.4049/jimmunol.181.9.6236] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The molecular properties of immunosuppressive n-3 polyunsaturated fatty acids (PUFA) have not been fully elucidated. Using CD4(+) T cells from wild-type control and fat-1 transgenic mice (enriched in n-3 PUFA), we show that membrane raft accumulation assessed by Laurdan (6-dodecanoyl-2-dimethyl aminonaphthalene) labeling was enhanced in fat-1 cells following immunological synapse (IS) formation by CD3-specific Ab expressing hybridoma cells. However, the localization of protein kinase Ctheta, phospholipase Cgamma-1, and F-actin into the IS was suppressed. In addition, both the phosphorylation status of phospholipase Cgamma-1 at the IS and cell proliferation as assessed by CFSE labeling and [(3)H]thymidine incorporation were suppressed in fat-1 cells. These data imply that lipid rafts may be targets for the development of dietary agents for the treatment of autoimmune and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Wooki Kim
- Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
17
|
Secor ER, Singh A, Guernsey LA, McNamara JT, Zhan L, Maulik N, Thrall RS. Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro. Int Immunopharmacol 2009; 9:340-6. [PMID: 19162239 DOI: 10.1016/j.intimp.2008.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 11/18/2008] [Accepted: 12/17/2008] [Indexed: 12/14/2022]
Abstract
Bromelain (Br), an extract from pineapple stem with cysteine protease activity, exerts anti-inflammatory effects in a number of inflammatory models. We have previously shown that Br treatment decreased activated CD4(+) T cells and has a therapeutic role in an ovalbumin-induced murine model of allergic airway disease. The current study was designed to determine the effect of Br on CD4(+) T cell activation, specifically the expression of CD25 in vitro. CD25 is up regulated upon T cell activation, found as a soluble fraction (sCD25) and is a therapeutic target in inflammation, autoimmunity and allergy. Br treatment of anti-CD3 stimulated CD4(+) T cells reduced CD25 expression in a dose and time dependent manner. This reduction of CD25 was dependent on the proteolytic action of Br as the addition of E64 (a cysteine protease inhibitor) abrogated this response. The concentration of sCD25 was increased in supernatants of Br treated activated CD4(+) T cells as compared to control cells, suggesting that Br proteolytically cleaved cell-surface CD25. This novel mechanism of action identifies how Br may exert its therapeutic benefits in inflammatory conditions.
Collapse
Affiliation(s)
- Eric R Secor
- Department of Immunology, University of Connecticut Health Center 263 Farmington Ave, MC1319Farmington, CT 06030, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
The Influence of Membrane Lipids in Staphylococcus aureus Gamma-Hemolysins Pore Formation. J Membr Biol 2008; 227:13-24. [DOI: 10.1007/s00232-008-9140-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 11/05/2008] [Indexed: 01/18/2023]
|