1
|
Hellerman Itzhaki M, Singer P. Advances in Medical Nutrition Therapy: Parenteral Nutrition. Nutrients 2020; 12:E717. [PMID: 32182654 PMCID: PMC7146311 DOI: 10.3390/nu12030717] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 01/08/2023] Open
Abstract
Parenteral nutrition has evolved tremendously, with parenteral formulas now safer and more accessible than ever. "All-in-one" admixtures are now available, which simplify parenteral nutrition usage and decrease line infection rates alongside other methods of infectious control. Recently published data on the benefits of parenteral nutrition versus enteral nutrition together with the widespread use of indirect calorimetry solve many safety issues that have emerged over the years. All these advances, alongside a better understanding of glycemic control and lipid and protein formulation improvements, make parenteral nutrition a safe alternative to enteral nutrition.
Collapse
Affiliation(s)
| | - Pierre Singer
- Department of General Intensive Care, Institute for Nutrition Research, Rabin Medical Center, Beilinson Hospital, Petah Tikva 49100, Israel;
| |
Collapse
|
2
|
Novak F, Vecka M, Meisnerova E, Sevela S, Vavrova L, Rychlikova J, Dolezalova L, Myslivcova D, Zak A, Vitek L, Novakova O. Fish oil supplementation with various lipid emulsions suppresses in vitro cytokine release in home parenteral nutrition patients: a crossover study. Nutr Res 2019; 72:70-79. [DOI: 10.1016/j.nutres.2019.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 01/03/2023]
|
3
|
Calder PC, Adolph M, Deutz NE, Grau T, Innes JK, Klek S, Lev S, Mayer K, Michael-Titus AT, Pradelli L, Puder M, Vlaardingerbroek H, Singer P. Lipids in the intensive care unit: Recommendations from the ESPEN Expert Group. Clin Nutr 2017; 37:1-18. [PMID: 28935438 DOI: 10.1016/j.clnu.2017.08.032] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/25/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022]
Abstract
This article summarizes the presentations given at an ESPEN Workshop on "Lipids in the ICU" held in Tel Aviv, Israel in November 2014 and subsequent discussions and updates. Lipids are an important component of enteral and parenteral nutrition support and provide essential fatty acids, a concentrated source of calories and building blocks for cell membranes. Whilst linoleic acid-rich vegetable oil-based enteral and parenteral nutrition is still widely used, newer lipid components such as medium-chain triglycerides and olive oil are safe and well tolerated. Fish oil (FO)-enriched enteral and parenteral nutrition appears to be well tolerated and confers additional clinical benefits, particularly in surgical patients, due to its anti-inflammatory and immune-modulating effects. Whilst the evidence base is not conclusive, there appears to be a potential for FO-enriched nutrition, particularly administered peri-operatively, to reduce the rate of complications and intensive care unit (ICU) and hospital stay in surgical ICU patients. The evidence for FO-enriched nutrition in non-surgical ICU patients is less clear regarding its clinical benefits and additional, well-designed large-scale clinical trials need to be conducted in this area. The ESPEN Expert Group supports the use of olive oil and FO in nutrition support in surgical and non-surgical ICU patients but considers that further research is required to provide a more robust evidence base.
Collapse
Affiliation(s)
- Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, United Kingdom.
| | - Michael Adolph
- Department of Anesthesiology and Intensive Care Medicine, Nutrition Support Team, University Clinic Tübingen, 72074 Tübingen, Germany
| | - Nicolaas E Deutz
- Center for Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Teodoro Grau
- Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Jacqueline K Innes
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Stanislaw Klek
- General and Oncology Surgery Unit, Intestinal Failure Center, Stanley Dudrick's Memorial Hospital, Skawina, Poland
| | - Shaul Lev
- Department of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Hasharon Hospital and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Konstantin Mayer
- Department of Internal Medicine, Med. Clinik II, University Hospital Giessen and Marburg, 35392 Giessen, Germany
| | - Adina T Michael-Titus
- Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Lorenzo Pradelli
- AdRes Health Economics and Outcomes Research, 10121 Turin, Italy
| | - Mark Puder
- Vascular Biology Program and the Department of Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hester Vlaardingerbroek
- Department of Pediatrics, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Pierre Singer
- Department of General Intensive Care and Institute for Nutrition Research, Rabin Medical Center, Hasharon Hospital and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Grenon SM, Hughes-Fulford M, Rapp J, Conte MS. Polyunsaturated fatty acids and peripheral artery disease. Vasc Med 2012; 17:51-63. [PMID: 22363018 DOI: 10.1177/1358863x11429175] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is substantial evidence that polyunsaturated fatty acids (PUFAs) such as n-3 and n-6 fatty acids (FAs) play an important role in prevention of atherosclerosis. In vitro and in vivo studies focusing on the interactions between monocytes and endothelial cells have explored the molecular effects of FAs on these interactions. Epidemiological surveys, followed by large, randomized, control trials have demonstrated a reduction in major cardiovascular events with supplementation of n-3 FAs in secondary prevention settings. The evidence of beneficial effects specific to patients with peripheral artery disease (PAD) remains elusive, and is the focus of this review.
Collapse
Affiliation(s)
- S Marlene Grenon
- Division of Vascular and Endovascular Surgery, University of California, San Francisco, San Francisco, CA 94121, USA.
| | | | | | | |
Collapse
|
5
|
O'Sullivan TA, Bremner AP, Beilin LJ, Ambrosini GL, Mori TA, Huang RC, Oddy WH. Polyunsaturated fatty acid intake and blood pressure in adolescents. J Hum Hypertens 2011; 26:178-87. [PMID: 21307885 DOI: 10.1038/jhh.2011.7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evidence that intake of polyunsaturated fatty acids (PUFAs) may modify blood pressure (BP) is generally limited to middle-aged or hypertensive populations. This study examined cross-sectional associations between BP and dietary intake of PUFAs in 814 adolescents aged 13-15 years participating in the Western Australian Pregnancy Cohort (Raine) Study. Fatty acid intakes were assessed using 3-day diet records and resting BP was determined using multiple oscillometric readings. In multivariate regression models, systolic BP was inversely associated with intakes of polyunsaturated (b=-0.436, P<0.01), omega-3 (b=-2.47, P=0.02), omega-6 (b=-0.362, P=0.04) and long chain omega-3 fatty acids (b=-4.37, P=0.04) in boys. Diastolic BP and mean arterial pressure were inversely associated with intakes of long chain omega-3 fatty acids in boys (b=-3.93, P=0.01, b=-4.05, P=0.01, respectively). For specific long-chain omega-3s, significant inverse associations were observed between eicosapentaenoic acid (EPA) and docosahexaenoic acid, such as systolic BP decreasing by 4.7 mm Hg (95% CI -9.3 to -0.1) for a quarter gram increase in EPA, but no significant associations were observed with docosapentaenoic acid. No significant associations were observed in girls, or with the omega-6 to omega-3 ratio. Our results suggest that gender may moderate relationships between fatty acid intake and BP in adolescence.
Collapse
Affiliation(s)
- T A O'Sullivan
- Telethon Institute for Child Health Research, Centre for Child Health Research, University of Western Australia, West Perth, Western Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|