1
|
Snowden SG, Koulman A, Gaser C, la Fleur SE, Roseboom TJ, Korosi A, de Rooij SR. Prenatal exposure to undernutrition is associated with a specific lipid profile predicting future brain aging. NPJ AGING 2024; 10:42. [PMID: 39349457 PMCID: PMC11442854 DOI: 10.1038/s41514-024-00169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/05/2024] [Indexed: 10/02/2024]
Abstract
Prenatal adversity affects cognitive and brain aging. Both lipid and leptin concentrations may be involved. We investigated if prenatal undernutrition is associated with a specific blood lipid profile and/or leptin concentrations, and if these relate to cognitive function and brain aging. 801 plasma samples of members of the Dutch famine birth cohort were assessed for lipidomics and leptin at age 58. Cognitive performance was measured with a Stroop task at 58, and MRI-based BrainAGE was derived in a subsample at 68. Out of 259 lipid signals, a signature of five identified individuals who were undernourished prenatally. These five lipids were not associated with cognitive performance, but three were predictive of BrainAGE. Leptin was not associated with prenatal famine exposure, Stroop performance, or BrainAGE. In conclusion, prenatal undernutrition was associated with an altered lipid profile predictive of BrainAGE 10 years later, demonstrating the potential of lipid profiles as early biomarkers for accelerated brain aging.
Collapse
Affiliation(s)
- Stuart G Snowden
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Christian Gaser
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Susanne E la Fleur
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Department of Epidemiology and Data Science, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Aniko Korosi
- Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne R de Rooij
- Department of Epidemiology and Data Science, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands.
- Amsterdam Public Health research institute, Aging & Later life, Health Behaviors & Chronic Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Joshi N, Sahay A, Mane A, Sundrani D, Randhir K, Wagh G, Thornburg K, Powell T, Yajnik C, Joshi S. Altered expression of nutrient transporters in syncytiotrophoblast membranes in preeclampsia placentae. Placenta 2023; 139:181-189. [PMID: 37421872 DOI: 10.1016/j.placenta.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/29/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION Expression of nutrient transporters in the placenta affects fetal growth. This study reports the protein expression of nutrient transporters in the syncytial membranes [microvillous membrane (MVM) and basal membrane (BM)] of normotensive control and preeclampsia placentae. METHODS Placentae were collected from fourteen normotensive control women and fourteen women with preeclampsia. The syncytiotrophoblast MVM and BM membranes were isolated. The protein expression of glucose transporter (GLUT1), vitamin B12 transporter (CD320) and fatty acid transporters (FATP2, FATP4) was assessed in both the membranes. RESULTS Comparison between membranes demonstrates similar CD320 protein expression in normotensive group whereas, in preeclampsia placentae it was higher in the BM as compared to MVM (p < 0.05). FATP2&4 protein expression was higher in the BM as compared to their respective MVM fraction in both the groups (p < 0.01 for both). Comparison between groups demonstrates higher GLUT1 expression in the MVM (p < 0.05) and BM (p < 0.05) whereas lower CD320 expression in the MVM (p < 0.05) of preeclampsia placentae as compared to their respective membranes in normotensive control. Furthermore, GLUT1 protein expression was positively associated and CD320 protein expression was negatively associated with maternal body mass index (BMI) (p < 0.05 for both). No difference was observed in the FATP2&4 protein expression. However, FATP4 protein expression was negatively associated with maternal blood pressure (p < 0.05 for MVM; p = 0.060 for BM) and birth weight (p < 0.05 for both membranes). DISCUSSION The current study for the first time demonstrates differential expression of various transporters in the syncytiotrophoblast membranes of the preeclampsia placentae which may influence fetal growth.
Collapse
Affiliation(s)
- Nikita Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Akriti Sahay
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Aditi Mane
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Deepali Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Karuna Randhir
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Girija Wagh
- Department of Obstetrics and Gynecology, Bharati Medical College and Hospital, Bharati Vidyapeeth University, Pune, India
| | - Kent Thornburg
- Department of Medicine, Center for Developmental Health, Knight Cardiovascular Institute, Bob and Charlee Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, OR, United States
| | - Theresa Powell
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India.
| |
Collapse
|
3
|
Menezes ACB, Dahlen CR, McCarthy KL, Kassetas CJ, Baumgaertner F, Kirsch JD, Dorsam ST, Neville TL, Ward AK, Borowicz PP, Reynolds LP, Sedivec KK, Forcherio JC, Scott R, Caton JS, Crouse MS. Fetal Hepatic Lipidome Is More Greatly Affected by Maternal Rate of Gain Compared with Vitamin and Mineral Supplementation at day 83 of Gestation. Metabolites 2023; 13:metabo13020175. [PMID: 36837794 PMCID: PMC9961797 DOI: 10.3390/metabo13020175] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Herein, we evaluated the hepatic lipid metabolic profiles of bovine fetuses in response to maternal vitamin and mineral supplementation (VMSUP; supplemented (VTM) or not (NoVTM)) and two different rates of gain (GAIN; low gain (LG), 0.28 kg/d, or moderate gain (MG), 0.79 kg/d). Crossbred Angus heifers (n = 35; initial BW = 359.5 ± 7.1 kg) were randomly assigned to a 2 × 2 factorial arrangement, resulting in the following treatment combinations: NoVTM-LG (n = 9), NoVTM-MG (n = 9), VTM-LG (n = 9), and VTM-MG (n = 8). Heifers received their treatments until d 83 of gestation, when they were ovariohysterectomized. Fetuses were harvested and liver samples were analyzed via ultrahigh-performance liquid chromatography-tandem mass spectroscopy to characterize lipid profiles and abundances. We identified 374 biochemicals/metabolites belonging to 57 sub-pathways of the lipid metabolism super-pathway. The majority of the biochemicals/metabolites (n = 152) were significantly affected by the main effect of GAIN. Maternal moderate rates of gain resulted in greater abundances (p ≤ 0.0001) of ω-3 fatty acids (eicosapentaenoate, docosapentaenoate, and docosahexaenoate) and lower abundances (p ≤ 0.0001) of ω-6 fatty acids. Further, MG resulted in the accumulation of several diacylglycerols and depletion of the majority of the monoacylglycerols. Concentrations of nearly all acylcarnitines (p ≤ 0.03) were decreased in VTM-LG fetal livers compared to all other treatment combinations, indicating a greater rate of complete oxidation of fatty acids. Levels of secondary bile acids were impacted by VMSUP, being greater (p ≤ 0.0048) in NoVTM than in VTM fetal livers. Moreover, NoVTM combined with lower rate of gain resulted in greater concentrations of most secondary bile acid biochemicals/metabolites. These data indicate that maternal diet influenced and altered fetal hepatic lipid composition in the first trimester of gestation. Maternal body weight gain exerted a greater influence on fetal lipid profiles than vitamin and mineral supplementation. Specifically, lower rate of gain (0.28 kg/d) resulted in an increased abundance of the majority of the biochemicals/metabolites identified in this study.
Collapse
Affiliation(s)
- Ana Clara B. Menezes
- Department of Animal Science, South Dakota State University, Brookings, SD 57006, USA
- Correspondence: (A.C.B.M.); (M.S.C.)
| | - Carl R. Dahlen
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Kacie L. McCarthy
- Department of Animal Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Cierrah J. Kassetas
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Friederike Baumgaertner
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - James D. Kirsch
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Sheri T. Dorsam
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Tammi L. Neville
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Alison K. Ward
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Pawel P. Borowicz
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Lawrence P. Reynolds
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Kevin K. Sedivec
- Central Grasslands Research and Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | | | - Ronald Scott
- Purina Animal Nutrition LLC, Gray Summit, MO 63039, USA
| | - Joel S. Caton
- Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Matthew S. Crouse
- United States Department of Agriculture, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
- Correspondence: (A.C.B.M.); (M.S.C.)
| |
Collapse
|
4
|
Bordeleau M, Fernández de Cossío L, Chakravarty MM, Tremblay MÈ. From Maternal Diet to Neurodevelopmental Disorders: A Story of Neuroinflammation. Front Cell Neurosci 2021; 14:612705. [PMID: 33536875 PMCID: PMC7849357 DOI: 10.3389/fncel.2020.612705] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Providing the appropriate quantity and quality of food needed for both the mother's well-being and the healthy development of the offspring is crucial during pregnancy. However, the macro- and micronutrient intake also impacts the body's regulatory supersystems of the mother, such as the immune, endocrine, and nervous systems, which ultimately influence the overall development of the offspring. Of particular importance is the association between unhealthy maternal diet and neurodevelopmental disorders in the offspring. Epidemiological studies have linked neurodevelopmental disorders like autism spectrum disorders, attention-deficit-hyperactivity disorder, and schizophrenia, to maternal immune activation (MIA) during gestation. While the deleterious consequences of diet-induced MIA on offspring neurodevelopment are increasingly revealed, neuroinflammation is emerging as a key underlying mechanism. In this review, we compile the evidence available on how the mother and offspring are both impacted by maternal dietary imbalance. We specifically explore the various inflammatory and anti-inflammatory effects of dietary components and discuss how changes in inflammatory status can prime the offspring brain development toward neurodevelopmental disorders. Lastly, we discuss research evidence on the mechanisms that sustain the relationship between maternal dietary imbalance and offspring brain development, involving altered neuroinflammatory status in the offspring, as well as genetic to cellular programming notably of microglia, and the evidence that the gut microbiome may act as a key mediator.
Collapse
Affiliation(s)
- Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | | | - M. Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University, McGill University, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Age-Related Macular Degeneration: From Epigenetics to Therapeutic Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:221-235. [PMID: 33848004 DOI: 10.1007/978-3-030-66014-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aberrant regulation of epigenetic mechanisms, including the two most common types; DNA methylation and histone modification have been implicated in common chronic progressive conditions, including Alzheimer disease, cardiovascular disease, and age-related macular degeneration (AMD). All these conditions are complex, meaning that environmental factors, genetic factors, and their interactions play a role in disease pathophysiology. Although genome wide association studies (GWAS), and studies on twins demonstrate the genetic/hereditary component to these complex diseases, including AMD, this contribution is much less than 100%. Moreover, the contribution of the hereditary component decreases in the advanced, later onset forms of these chronic diseases including AMD. This underscores the need to elucidate how the genetic and environmental factors function to exert their influence on disease pathophysiology. By teasing out epigenetic mechanisms and how they exert their influence on AMD, therapeutic targets can be tailored to prevent and/or slow down disease progression. Epigenetic studies that incorporate well-characterized patient tissue samples (including affected tissues and peripheral blood), similar to those relevant to gene expression studies, along with genetic and epidemiological information, can be the first step in developing appropriate functional assays to validate findings and identify potential therapies.
Collapse
|
6
|
Song L, Yang L, Wang J, Liu X, Bai L, Di A, Li G. Generation of Fad2 and Fad3 transgenic mice that produce n-6 and n-3 polyunsaturated fatty acids. Open Biol 2019; 9:190140. [PMID: 31640475 PMCID: PMC6833225 DOI: 10.1098/rsob.190140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Linoleic acid (18 : 2, n-6) and α-linolenic acid (18 : 3, n-3) are polyunsaturated fatty acids (PUFAs), which are essential for mammalian health, development and growth. However, the majority of mammals, including humans, are incapable of synthesizing n-6 and n-3 PUFAs. Mammals must obtain n-6 and n-3 PUFAs from their diet. Fatty acid desaturase (Fad) plays a critical role in plant PUFA biosynthesis. Therefore, we generated plant-derived Fad3 single and Fad2–Fad3 double transgenic mice. Compared with wild-type mice, we found that PUFA levels were greatly increased in the single and double transgenic mice by measuring PUFA levels. Moreover, the concentration of n-6 and n-3 PUFAs in the Fad2–Fad3 double transgenic mice were greater than in the Fad3 single transgenic mice. These results demonstrate that the plant-derived Fad2 and Fad3 genes can be expressed in mammals. To clarify the mechanism for Fad2 and Fad3 genes in transgenic mice, we measured the PUFAs synthesis-related genes. Compared with wild-type mice, these Fad transgenic mice have their own n-3 and n-6 PUFAs biosynthetic pathways. Thus, we have established a simple and efficient method for in vivo synthesis of PUFAs.
Collapse
Affiliation(s)
- Lishuang Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot 010070, People's Republic of China.,College of Life Science, Inner Mongolia University, Hohhot 010070, People's Republic of China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot 010070, People's Republic of China
| | - Jiapeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot 010070, People's Republic of China.,College of Life Science, Inner Mongolia University, Hohhot 010070, People's Republic of China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot 010070, People's Republic of China
| | - Lige Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot 010070, People's Republic of China.,College of Life Science, Inner Mongolia University, Hohhot 010070, People's Republic of China
| | - Anqi Di
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot 010070, People's Republic of China.,College of Life Science, Inner Mongolia University, Hohhot 010070, People's Republic of China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot 010070, People's Republic of China.,College of Life Science, Inner Mongolia University, Hohhot 010070, People's Republic of China
| |
Collapse
|
7
|
Maternal Pre-Pregnancy Obesity Attenuates Response to Omega-3 Fatty Acids Supplementation During Pregnancy. Nutrients 2018; 10:nu10121908. [PMID: 30518052 PMCID: PMC6315963 DOI: 10.3390/nu10121908] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Maternal obesity is associated with adverse offspring outcomes. Inflammation and deficiency of anti-inflammatory nutrients like omega(n)-3 polyunsaturated fatty acids (PUFA) may contribute to these associations. Fetal supply of n-3 PUFA is dependent on maternal levels and studies have suggested that improved offspring outcomes are associated with higher maternal intake. However, little is known about how maternal obesity affects the response to n-3 supplementation during pregnancy. We sought to determine (1) the associations of obesity with PUFA concentrations and (2) if the systemic response to n-3 supplementation differs by body mass index (BMI). This was a secondary analysis of 556 participants (46% lean, 28% obese) in the Maternal-Fetal Medicine Units Network trial of n-3 (Docosahexaenoic acid (DHA) + Eicosapentaenoic acid (EPA)) supplementation, in which participants had 2g/day of n-3 (n = 278) or placebo (n = 278) from 19 to 22 weeks until delivery. At baseline, obese women had higher plasma n-6 arachidonic acid concentrations (β: 0.96% total fatty acids; 95% Confidence Interval (CI): 0.13, 1.79) and n-6/n-3 ratio (β: 0.26 unit; 95% CI: 0.05, 0.48) compared to lean women. In the adjusted analysis, women in all BMI groups had higher n-3 concentrations following supplementation, although obese women had attenuated changes (β = -2.04%, CI: -3.19, -0.90, interaction p = 0.000) compared to lean women, resulting in a 50% difference in the effect size. Similarly, obese women also had an attenuated reduction (β = 0.94 units, CI: 0.40, 1.47, interaction p = 0.046) in the n-6/n-3 ratio (marker of inflammatory status), which was 65% lower compared to lean women. Obesity is associated with higher inflammation and with an attenuated response to n-3 supplementation in pregnancy.
Collapse
|
8
|
He Z, Zhang R, Jiang F, Hou W, Hu C. Role of genetic and environmental factors in DNA methylation of lipid metabolism. Genes Dis 2017; 5:9-15. [PMID: 30258929 PMCID: PMC6146210 DOI: 10.1016/j.gendis.2017.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/17/2017] [Indexed: 12/26/2022] Open
Abstract
A number of recent studies revealed that DNA methylation plays a central role in the regulation of lipid metabolism. DNA methylation modifications are important regulators of transcriptional networks that do not affect the DNA sequence and can translate genetic variants and environmental factors into phenotypic traits. Therefore, elucidating the factors that underlie inter-individual DNA methylation variations gives us an opportunity to predict diseases and interfere with the establishment of aberrant DNA methylation early. In this review, we summarize the findings of DNA methylation-related studies focused on unravelling the potential role of genetic and environmental factors in DNA methylation and the regulatory effect of DNA methylation on gene expression in lipid metabolism.
Collapse
Affiliation(s)
- Zhen He
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Jiang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wenjing Hou
- Fengxian Central Hospital, Affiliated to Southern Medical University, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Institute for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| |
Collapse
|
9
|
Shysh AM, Nagibin VS, Kaplinskii SP, Dosenko VE. N-3 long chain polyunsaturated fatty acids increase the expression of PPARγ-target genes and resistance of isolated heart and cultured cardiomyocytes to ischemic injury. Pharmacol Rep 2016; 68:1133-1139. [DOI: 10.1016/j.pharep.2016.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 01/24/2023]
|
10
|
Sopková D, Vlčková R, Andrejčáková Z, Hertelyová Z, Gancarčíková S, Nemcová R. The Influence of Probiotic Lactobacilli and Flaxseed on the Health of Weaned Piglets and Metabolism of Polyunsaturated Fatty Acids (PUFAs). FOLIA VETERINARIA 2016. [DOI: 10.1515/fv-2016-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
This study investigated for 14 days post-weaning, the influence of dietary supplementation of synbiotics in the form of probiotic cheeses containing cultures of L. plantarum and L. fermentum and crushed flaxseed (source of ω-3 polyunsaturated fatty acids — PUFAs and fibre) on 36 commercial piglets originating from an infected herd (Coronavirus and E. coli) during the critical period of weaning. We focused on the health and metabolism of PUFAs in this critical period of a piglet’s life. The dietary supplementation positively affected: the overall health state of weaners, reduced diarrhoea by 29 % by 14 days post-weaning and significantly increased the counts of lactic acid bacteria, bifidobacteria and the production of volatile fatty acids. The PUFA concentrations in the m. biceps femoris of the piglets were analysed by gas chromatography. High levels of ω-3 alpha-linolenic acid (ALA) in flaxseed increased significantly the level of ALA, eicosapentaenic acid (EPA) and docosahexaenic acid (DHA) in the pig muscles on days 7 and 14 post-weaning. The levels of ω-6 linolenic acid (LA) were less affected by the diet, but were increased on day 14 post-weaning, while the conversion products of LA, and arachidonic acid (AA), were decreased on days 7 and 14. The increased level of dietary ALA favoured the activity of Δ-6-desaturase for the conversion of ALA to EPA and DHA, at the expense of AA synthesis from LA. The ability of synbiotics to incorporate high levels of DHA in the pig muscles appear prospective for improving the nutritional properties of pork and reducing the occurrence of civilization diseases in consumers of this product of animal origin.
Collapse
Affiliation(s)
- D. Sopková
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, The Slovakia Republic
| | - R. Vlčková
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, The Slovakia Republic
| | - Z. Andrejčáková
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, The Slovakia Republic
| | - Z. Hertelyová
- Faculty of Medicine, University of Pavol Jozef Šafarik, SNP 1, 040 66 Košice, The Slovakia Republic
| | - S. Gancarčíková
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, The Slovakia Republic
| | - R. Nemcová
- University of Veterinary Medicine and Pharmacy, Komenského 73, 041 81 Košice, The Slovakia Republic
| |
Collapse
|
11
|
Ivanov AV, Dedul AG, Fedotov YN, Komlichenko EV. Toward optimal set of single nucleotide polymorphism investigation before IVF. Gynecol Endocrinol 2016; 32:11-18. [PMID: 27759448 DOI: 10.1080/09513590.2016.1232793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND At present, the patient preparation for IVF needs to undergo a series of planned tests, including the genotyping of single nucleotide polymorphism (SNP) alleles of some genes. In former USSR countries, such investigation was not included in overwhelming majority of health insurance programs and paid by patient. In common, there are prerequisites to the study of more than 50 polymorphisms. An important faced task is to determine the optimal panel for SNP genotyping in terms of price/number of SNP. MATERIALS AND METHODS During 2009-2015 in the University Hospital of St. Petersburg State University, blood samples were analyzed from 550 women with different reproductive system disorders preparing for IVF and 46 healthy women in control group. In total, 28 SNP were analyzed in the genes of thrombophilia factors, folic acid cycle, detoxification system, and the renin-angiotensin system. The method used was real-time PCR. RESULTS A significant increase in the frequency of pathological alleles of some polymorphisms in patients with habitual failure of IVF was shown, compared with the control group. As a result, two options defined panels for optimal typing SNP before IVF were composed. Standard panel includes 8 SNP, 5 in thromborhilic factors, and 3 in folic acid cycle genes. They are 20210 G > A of FII gene, R506Q G > A of FV gene (mutation Leiden), -675 5G > 4G of PAI-I gene, L33P T > C of ITGB3 gene, -455 G > A of FGB gene, 667 C > T of MTHFR gene, 2756 A > G of MTR gene, and 66 A > G of MTRR gene. Extended panel of 15 SNP also includes 807 C > T of ITGA2 gene, T154M C > T of GP1BA gene, second polymorphism 1298 A > C in MTHFR gene, polymorphisms of the renin-angiotensin gene AGT M235T T > C and -1166 A > C of AGTR1 gene, polymorphisms I105V A > G and A114V C > T of detoxification system gene GSTP. CONCLUSION The results of SNP genotyping can be adjusted for treatment tactics and IVF, and also medical support getting pregnant. The success rate of IVF is increased as the result, especially in the group with the usual failure of IVF.
Collapse
Affiliation(s)
- A V Ivanov
- a University Hospital of Saint-Petersburg State University , Saint-Petersburg , Russia
- b North-West Centre for Evidence-Based Medicine , Saint-Petersburg , Russia , and
| | - A G Dedul
- a University Hospital of Saint-Petersburg State University , Saint-Petersburg , Russia
| | - Y N Fedotov
- a University Hospital of Saint-Petersburg State University , Saint-Petersburg , Russia
| | - E V Komlichenko
- a University Hospital of Saint-Petersburg State University , Saint-Petersburg , Russia
- c Clinic of Obstetrics and Gynecology, Saint-Petersburg State Medical University Named After Academician I.P. Pavlov , Saint-Petersburg , Russia
| |
Collapse
|
12
|
Calabuig-Navarro V, Puchowicz M, Glazebrook P, Haghiac M, Minium J, Catalano P, Hauguel deMouzon S, O’Tierney-Ginn P. Effect of ω-3 supplementation on placental lipid metabolism in overweight and obese women. Am J Clin Nutr 2016; 103:1064-72. [PMID: 26961929 PMCID: PMC4807706 DOI: 10.3945/ajcn.115.124651] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The placentas of obese women accumulate lipids that may alter fetal lipid exposure. The long-chain omega-3 fatty acids (n–3 FAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) alter FA metabolism in hepatocytes, although their effect on the placenta is poorly understood. OBJECTIVE We aimed to investigate whether n–3 supplementation during pregnancy affects lipid metabolism in the placentas of overweight and obese women at term. DESIGN A secondary analysis of a double-blind randomized controlled trial was conducted in healthy overweight and obese pregnant women who were randomly assigned to DHA plus EPA (2 g/d) or placebo twice a day from early pregnancy to term. Placental FA uptake, esterification, and oxidation pathways were studied by measuring the expression of key genes in the placental tissue of women supplemented with placebo and n–3 and in vitro in isolated trophoblast cells in response to DHA and EPA treatment. RESULTS Total lipid content was significantly lower in the placentas of overweight and obese women supplemented with n–3 FAs than in those supplemented with placebo (14.14 ± 1.03 compared with 19.63 ± 1.45 mg lipid/g tissue; P < 0.05). The messenger RNA expression of placental FA synthase (FAS) and diacylglycerol O-acyltransferase 1 (DGAT1) was negatively correlated with maternal plasma enrichment in DHA and EPA (P < 0.05). The expression of placental peroxisome proliferator–activated receptor γ (r = −0.39, P = 0.04) and its target genes DGAT1 (r = −0.37, P = 0.02) and PLIN2 (r = −0.38, P = 0.04) significantly decreased, with an increasing maternal n–3:n–6 ratio (representing the n–3 status) near the end of pregnancy. The expression of genes that regulate FA oxidation or uptake was not changed. Birth weight and length were significantly higher in the offspring of n–3-supplemented women than in those in the placebo group (P < 0.05), but no differences in the ponderal index were observed. Supplementation of n–3 significantly decreased FA esterification in isolated trophoblasts without affecting FA oxidation. CONCLUSION Supplementing overweight and obese women with n–3 FAs during pregnancy inhibited the ability of the placenta to esterify and store lipids. This trial was registered at clinicaltrials.gov as NCT00957476.
Collapse
Affiliation(s)
| | | | | | - Maricela Haghiac
- Department of Reproductive Biology, MetroHealth Medical Center, and
| | - Judi Minium
- Department of Reproductive Biology, MetroHealth Medical Center, and
| | - Patrick Catalano
- Department of Reproductive Biology, MetroHealth Medical Center, and
| | | | - Perrie O’Tierney-Ginn
- Department of Reproductive Biology, MetroHealth Medical Center, and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Pennington KL, DeAngelis MM. Epigenetic Mechanisms of the Aging Human Retina. J Exp Neurosci 2016; 9:51-79. [PMID: 26966390 PMCID: PMC4777243 DOI: 10.4137/jen.s25513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 12/20/2022] Open
Abstract
Degenerative retinal diseases, such as glaucoma, age-related macular degeneration, and diabetic retinopathy, have complex etiologies with environmental, genetic, and epigenetic contributions to disease pathology. Much effort has gone into elucidating both the genetic and the environmental risk factors for these retinal diseases. However, little is known about how these genetic and environmental risk factors bring about molecular changes that lead to pathology. Epigenetic mechanisms have received extensive attention of late for their promise of bridging the gap between environmental exposures and disease development via their influence on gene expression. Recent studies have identified epigenetic changes that associate with the incidence and/or progression of each of these retinal diseases. Therefore, these epigenetic modifications may be involved in the underlying pathological mechanisms leading to blindness. Further genome-wide epigenetic studies that incorporate well-characterized tissue samples, consider challenges similar to those relevant to gene expression studies, and combine the genome-wide epigenetic data with genome-wide genetic and expression data to identify additional potentially causative agents of disease are needed. Such studies will allow researchers to create much-needed therapeutics to prevent and/or intervene in disease progression. Improved therapeutics will greatly enhance the quality of life and reduce the burden of disease management for millions of patients living with these potentially blinding conditions.
Collapse
Affiliation(s)
- Katie L Pennington
- Postdoctoral Fellow, Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Margaret M DeAngelis
- Associate Professor, Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
14
|
Kemse NG, Kale AA, Joshi SR. Supplementation of maternal omega-3 fatty acids to pregnancy induced hypertension Wistar rats improves IL10 and VEGF levels. Prostaglandins Leukot Essent Fatty Acids 2016; 104:25-32. [PMID: 26802939 DOI: 10.1016/j.plefa.2015.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 11/09/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Our recent study demonstrates the beneficial effect of a combined supplementation of vitamin B12, folic acid, and docosahexaenoic acid in reducing the severity of pregnancy induced hypertension (PIH). It is also known to be associated with angiogenic imbalance and inflammation. The current study examines whether the individual/combined supplementation of folic acid, vitamin B12 and omega-3 fatty acid during pregnancy can ameliorate the inflammatory markers and restore the angiogenic balance in a rat model of PIH. MATERIALS AND METHODS There were total of six groups, control and five treatment groups: PIH Induced; PIH+vitamin B12; PIH+folic acid; PIH+Omega-3 fatty acids and PIH+combined micronutrient supplementation (vitamin B12+folic acid+omega-3 fatty acids). Hypertension during pregnancy was induced using L- Nitroarginine methylester (L-NAME; 50mg/kg body weight/day). Dams were dissected at d20 of gestation and placental tissues were collected for further analysis. RESULTS Animals from the PIH induced group demonstrated lower (p<0.01 for both) IL-10 and VEGF levels as compared to control. However, PIH induction did not alter the protein levels of eNOS, IL-6, Flt and mRNA levels of VEGF and VEGFR-1/ Flt-1. Individual micronutrient supplementation of vitamin B12 and folate did not offer benefit. In contrast individual omega-3 fatty acid as well as combined micronutrient supplementation showed IL-10 and VEGF levels comparable to that of control. CONCLUSION Omega 3 fatty acid supplementation plays a key role in reducing inflammation in pregnancy induced hypertension.
Collapse
Affiliation(s)
- Nisha G Kemse
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati, Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Anvita A Kale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati, Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Sadhana R Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati, Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India.
| |
Collapse
|