1
|
Pinto VM, Mazzi F, De Franceschi L. Novel therapeutic approaches in thalassemias, sickle cell disease, and other red cell disorders. Blood 2024; 144:853-866. [PMID: 38820588 DOI: 10.1182/blood.2023022193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024] Open
Abstract
ABSTRACT In this last decade, a deeper understanding of the pathophysiology of hereditary red cell disorders and the development of novel classes of pharmacologic agents have provided novel therapeutic approaches to thalassemias, sickle cell disease (SCD), and other red cell disorders. Here, we analyze and discuss the novel therapeutic options according to their targets, taking into consideration the complex process of erythroid differentiation, maturation, and survival of erythrocytes in the peripheral circulation. We focus on active clinical exploratory and confirmatory trials on thalassemias, SCD, and other red cell disorders. Beside β-thalassemia and SCD, we found that the development of new therapeutic strategies has allowed for the design of clinic studies for hereditary red cell disorders still lacking valuable therapeutic alternative such as α-thalassemias, congenital dyserythropoietic anemia, or Diamond-Blackfan anemia. In addition, reduction of heme synthesis, which can be achieved by the repurposed antipsychotic drug bitopertin, might affect not only hematological disorders but multiorgan diseases such as erythropoietic protoporphyria. Finally, our review highlights the current state of therapeutic scenarios, in which multiple indications targeting different red cell disorders are being considered for a single agent. This is a welcome change that will hopefully expand therapeutic option for patients affected by thalassemias, SCD, and other red cell disorders.
Collapse
Affiliation(s)
- Valeria Maria Pinto
- Ematologia e Terapie Cellulari, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Centro della Microcitemia, Anemie Congenite e Dismetabolismo del Ferro, Ente Ospedaliero Ospedali Galliera, Genoa, Italy
| | - Filippo Mazzi
- Department of Medicine, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Lucia De Franceschi
- Department of Medicine, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
- Department of Engineering for Innovative Medicine, University of Verona, Verona, Italy
| |
Collapse
|
2
|
Wu CYC, Zhang Y, Xu L, Huang Z, Zou P, Clemons GA, Li C, Citadin CT, Zhang Q, Lee RHC. The role of serum/glucocorticoid-regulated kinase 1 in brain function following cerebral ischemia. J Cereb Blood Flow Metab 2024; 44:1145-1162. [PMID: 38235747 PMCID: PMC11179613 DOI: 10.1177/0271678x231224508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Cardiopulmonary arrest (CA) is a major cause of death/disability in the U.S. with poor prognosis and survival rates. Current therapeutic challenges are physiologically complex because they involve hypoperfusion (decreased cerebral blood flow), neuroinflammation, and mitochondrial dysfunction. We previously discovered novel serum/glucocorticoid-regulated kinase 1 (SGK1) is highly expressed in brain of neurons that are susceptible to ischemia (hippocampus and cortex). We inhibited SGK1 and utilized pharmacological (specific inhibitor, GSK650394) and neuron-specific genetic approaches (shRNA) in rodent models of CA to determine if SGK1 is responsible for hypoperfusion, neuroinflammation, mitochondrial dysfunctional, and neurological deficits after CA. Inhibition of SGK1 alleviated cortical hypoperfusion and neuroinflammation (via Iba1, GFAP, and cytokine array). Treatment with GSK650394 enhanced mitochondrial function (via Seahorse respirometry) in the hippocampus 3 and 7 days after CA. Neuronal injury (via MAP2, dMBP, and Golgi staining) in the hippocampus and cortex was observed 7 days after CA but ameliorated with SGK1-shRNA. Moreover, SGK1 mediated neuronal injury by regulating the Ndrg1-SOX10 axis. Finally, animals subjected to CA exhibited learning/memory, motor, and anxiety deficits after CA, whereas SGK1 inhibition via SGK1-shRNA improved neurocognitive function. The present study suggests the fundamental roles of SGK1 in brain circulation and neuronal survival/death in cerebral ischemia-related diseases.
Collapse
Affiliation(s)
- Celeste Yin-Chieh Wu
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Yulan Zhang
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Li Xu
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Zhihai Huang
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Peibin Zou
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Garrett A Clemons
- Department of Cellular Biology and Anatomy, Louisiana State University Health, Shreveport, LA, USA
| | - Chun Li
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Cristiane T Citadin
- Department of Cellular Biology and Anatomy, Louisiana State University Health, Shreveport, LA, USA
| | - Quanguang Zhang
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| | - Reggie Hui-Chao Lee
- Stroke Center for Research, Louisiana State University Health, Shreveport, LA, USA
- Department of Neurology, Louisiana State University Health, Shreveport, LA, USA
| |
Collapse
|
3
|
Couto E Silva A, Wu CYC, Clemons GA, Acosta CH, Chen CT, Possoit HE, Citadin CT, Lee RHC, Brown JI, Frankel A, Lin HW. Protein arginine methyltransferase 8 modulates mitochondrial bioenergetics and neuroinflammation after hypoxic stress. J Neurochem 2021; 159:742-761. [PMID: 34216036 DOI: 10.1111/jnc.15462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022]
Abstract
Protein arginine methyltransferases (PRMTs) are a family of enzymes involved in gene regulation and protein/histone modifications. PRMT8 is primarily expressed in the central nervous system, specifically within the cellular membrane and synaptic vesicles. Recently, PRMT8 has been described to play key roles in neuronal signaling such as a regulator of dendritic arborization, synaptic function and maturation, and neuronal differentiation and plasticity. Here, we examined the role of PRMT8 in response to hypoxia-induced stress in brain metabolism. Our results from liquid chromatography mass spectrometry, mitochondrial oxygen consumption rate (OCR), and protein analyses indicate that PRMT8(-/-) knockout mice presented with altered membrane phospholipid composition, decreased mitochondrial stress capacity, and increased neuroinflammatory markers, such as TNF-α and ionized calcium binding adaptor molecule 1 (Iba1, a specific marker for microglia/macrophage activation) after hypoxic stress. Furthermore, adenovirus-based overexpression of PRMT8 reversed the changes in membrane phospholipid composition, mitochondrial stress capacity, and neuroinflammatory markers. Together, our findings establish PRMT8 as an important regulatory component of membrane phospholipid composition, short-term memory function, mitochondrial function, and neuroinflammation in response to hypoxic stress.
Collapse
Affiliation(s)
| | | | | | | | - Chuck T Chen
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - HarLee E Possoit
- Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | | | - Jennifer I Brown
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam Frankel
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hung Wen Lin
- Department of Cellular Biology & Anatomy.,Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|