1
|
Yang D, Li P, Dang Y, Zhu S, Shi H, Wu T, Zhang Z, Chen C, Zong Y. Identifying the importance of PCK1 in maintaining ileal epithelial barrier integrity in Crohn's disease. Gene 2024; 931:148872. [PMID: 39159791 DOI: 10.1016/j.gene.2024.148872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Crohn's disease (CD) is marked by disruption of intestinal epithelial barrier, with unclear underlying molecular mechanisms. This study aimed to investigate key genes regulating the intestinal barrier in CD patients. METHODS Differential gene expression analysis and gene set enrichment analysis were conducted to identify potential key genes involved in CD within the GEO database. Single-cell RNA sequencing from ileum samples in GSE134809 of 59,831 inflamed and uninflamed cells from 11 CD patients and microarray data from ileal tissues in GSE69762 (3 controls and 4 CD patients) and GSE75214 (11 controls and 51 CD patients) with GSE179285 (49 uninflamed and 33 inflamed from CD patients) as the validation set. Protein-protein interaction and logistic regression analyses identified key downregulated genes in CD. A key gene was then investigated through immunohistochemistry of ileal tissues from 5 CD patients and in the Caco-2 cell line with RNA interference and treatment with IFN-γ and TNF-α to stimulate inflammation. RESULTS Single-cell RNA-seq identified 33 genes and microarray identified 167 genes with significant downregulation in inflamed CD samples. PCK1 was identified and validated as one of the most promising candidate genes. Reduced PCK1 expression was evident in inflamed ileal tissues. In vitro, knockdown of PCK1 resulted in decreased cell viability, increased apoptosis, and reduced nectin-2 production, while combination of IFN-γ and TNF-α significantly reduced PCK1. CONCLUSIONS PCK1 is downregulated in inflamed ileal tissues of CD patients and may be a key factor in maintaining epithelial integrity during inflammation in Crohn's disease.
Collapse
Affiliation(s)
- Deyi Yang
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Pengchong Li
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yan Dang
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shengtao Zhu
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Haiyun Shi
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ting Wu
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zinan Zhang
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Chuyan Chen
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ye Zong
- Department of Gastroenterology, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
2
|
Zhang Y, Wang Z, Lu Y, Sanchez DJ, Li J, Wang L, Meng X, Chen J, Kien TT, Zhong M, Gao W, Ding X. Region-Specific CD16 + Neutrophils Promote Colorectal Cancer Progression by Inhibiting Natural Killer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403414. [PMID: 38790136 PMCID: PMC11304263 DOI: 10.1002/advs.202403414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Indexed: 05/26/2024]
Abstract
The colon is the largest compartment of the immune system, with innate immune cells exposed to antigens in the environment. However, the mechanisms by which the innate immune system is instigated are poorly defined in colorectal cancer (CRC). Here, a population of CD16+ neutrophils that specifically accumulate in CRC tumor tissues by imaging mass cytometry (IMC), immune fluorescence, and flow cytometry, which demonstrated pro-tumor activity by disturbing natural killer (NK) cells are identified. It is found that these CD16+ neutrophils possess abnormal cholesterol accumulation due to activation of the CD16/TAK1/NF-κB axis, which upregulates scavenger receptors for cholesterol intake including CD36 and LRP1. Consequently, these region-specific CD16+ neutrophils not only competitively inhibit cholesterol intake of NK cells, which interrupts NK lipid raft formation and blocks their antitumor signaling but also release neutrophil extracellular traps (NETs) to induce the death of NK cells. Furthermore, CD16-knockout reverses the pro-tumor activity of neutrophils and restored NK cell cytotoxicity. Collectively, the findings suggest that CRC region-specific CD16+ neutrophils can be a diagnostic marker and potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Zien Wang
- State Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Yu Lu
- State Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - David J. Sanchez
- Pharmaceutical Sciences DepartmentCollege of PharmacyWestern University of Health Sciences309 East 2nd StreetHPC 225PomonaCA90025USA
| | - Jiaojiao Li
- School of Biomedical EngineeringFaculty of Engineering and ITUniversity of Technology SydneySydneyNSW2007Australia
| | - Linghao Wang
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xiaoxue Meng
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Jianjun Chen
- Department of Gastrointestinal SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Tran Trung Kien
- Oncology departmentUniversity Medical Shing Mark Hospital1054 Highway 51, Long Binh Tan Ward, Bien Hoa CityDong Nai76000Vietnam
| | - Ming Zhong
- Department of Gastrointestinal SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Wei‐Qiang Gao
- State Key Laboratory of Systems Medicine for CancerRenji HospitalSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
- Med‐X Research Institute & School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
3
|
Gou L, Li H, Jiang Y, Liu Y, Gu H, Xu Z, Jin W, Li L, Shi Y, Zhang J, Fang Z, Meng X, Jiang Y, Li H, Wang Y, Cheng S. Non-O blood types are associated with a greater risk of large artery atherosclerosis stroke and dysregulation of cholesterol metabolism: an observational study. Lipids Health Dis 2024; 23:211. [PMID: 38965603 PMCID: PMC11223365 DOI: 10.1186/s12944-024-02199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Previous research on ABO blood types and stroke has been controversial, predominantly suggesting heightened risk of stroke in non-O blood types. Nonetheless, investigations into the correlation and underlying mechanisms between ABO blood groups and stroke subtypes, especially within Chinese cohorts, remain limited. METHODS The ABO blood types of 9,542 ischaemic stroke (IS) patients were inferred using two ABO gene loci (c.261G > del; c.802G > A). The healthy population was derived from the 1000 Genomes Project. Patients were classified by the causative classification system (CCS). Volcano plot and gene ontology (GO) analysis were employed to explore protein differential expression among blood types. Additionally, HT29 and SW480 cell lines with downregulated ABO expression were generated to evaluate its impact on cholesterol uptake and efflux. RESULTS A greater proportion of stroke patients had non-O blood types (70.46%) than did healthy individuals (61.54%). Notable differences in blood type distributions were observed among stroke subtypes, with non-O blood type patients mainly classified as having large artery atherosclerosis (LAA). Clinical baseline characteristics, such as the low-density lipoprotein cholesterol level, activated partial thromboplastin time and thrombin time, varied significantly among blood types. A volcano plot revealed 17 upregulated and 42 downregulated proteins in the O blood type. GO term analysis indicated that downregulated proteins were primarily associated with lipid metabolism pathways. In vitro experiments revealed that reducing ABO gene expression decreased cholesterol uptake and increased cholesterol efflux. CONCLUSIONS This study revealed that the non-O blood type increased the risk of LAA stroke through cholesterol metabolism.
Collapse
Affiliation(s)
- Lan Gou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haowen Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yingyu Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongqiu Gu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhe Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weina Jin
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lanxin Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanfeng Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jie Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Changping Laboratory, Beijing, China.
- Clinical Center for Precision Medicine in Stroke, Capital Medical University, Beijing, China.
| | - Si Cheng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Changping Laboratory, Beijing, China.
- Clinical Center for Precision Medicine in Stroke, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Shi L, Liu X, Li E, Zhang S, Zhou A. Association of lipid-lowering drugs with gut microbiota: A Mendelian randomization study. J Clin Lipidol 2024:S1933-2874(24)00187-9. [PMID: 38971663 DOI: 10.1016/j.jacl.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The gut microbiota can be influenced by lipid metabolism. We aimed to evaluate the impact of lipid-lowering medications, such as proproteinconvertase subtilisin/kexin type 9 (PCSK9) inhibitors, Niemann-Pick C1-like protein (NPC1L1) inhibitors, and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) inhibitors, on gut microbiota through drug target Mendelian randomization (MR) investigation. METHODS We used genetic variants that were associated with low-density lipoprotein cholesterol (LDL-C) in genome-wide association studies and located within or near drug target genes as proxies for lipid-lowering drug exposure. In addition, expression trait loci in drug target genes were used as complementary genetic tools. We used effect estimates calculated using inverse variance weighted MR (IVW-MR) and summary data-based MR (SMR). Multiple sensitivity analyses were performed. RESULTS Genetic proxies for lipid-lowering drugs broadly affected the abundance of gut microbiota. High expression of NPC1L1 was significantly associated with an increase in the genus Eggerthella (β = 1.357, SE = 0.337, P = 5.615 × 10-5). An HMGCR-mediated increase in LDL-C was significantly associated with the order Pasteurellales (β = 0.489, SE = 0.123, P = 6.955 × 10-5) and the genus Haemophilus (β = 0.491, SE = 0.125, P = 8.379 × 10-5), whereas a PCSK9-mediated increase in LDL-C was associated with the genus Terrisporobacter (β = 0.666, SE = 0.127, P = 1.649 × 10-5). No pleiotropy was detected. CONCLUSIONS This drug target MR highlighted the potential interventional effects of lipid-lowering drugs on the gut microbiota and separately revealed the possible effects of different types of lipid-lowering drugs on specific gut microbiota.
Collapse
Affiliation(s)
- Lubo Shi
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, PR China (Drs Shi, Zhang, Zhou)
| | - Xiaoduo Liu
- Department of Neurology & Innovation Center for Neurological Disorders , Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, PR China (Dr Liu)
| | - Enze Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, PR China (Dr Li)
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, PR China (Drs Shi, Zhang, Zhou).
| | - Anni Zhou
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, PR China (Drs Shi, Zhang, Zhou).
| |
Collapse
|
5
|
Ge Q, Yan Y, Luo Y, Teng T, Cao C, Zhao D, Zhang J, Li C, Chen W, Yang B, Yi Z, Chang T, Chen X. Dietary supplements: clinical cholesterol-lowering efficacy and potential mechanisms of action. Int J Food Sci Nutr 2024; 75:349-368. [PMID: 38659110 DOI: 10.1080/09637486.2024.2342301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/06/2024] [Indexed: 04/26/2024]
Abstract
This review aims to analyse the efficacy of dietary supplements in reducing plasma cholesterol levels. Focusing on evidence from meta-analyses of randomised controlled clinical trials, with an emphasis on potential mechanisms of action as supported by human, animal, and cell studies. Certain dietary supplements including phytosterols, berberine, viscous soluble dietary fibres, garlic supplements, soy protein, specific probiotic strains, and certain polyphenol extracts could significantly reduce plasma total and low-density lipoprotein (LDL) cholesterol levels by 3-25% in hypercholesterolemic patients depending on the type of supplement. They tended to be more effective in reducing plasma LDL cholesterol level in hypercholesterolemic individuals than in normocholesterolemic individuals. These supplements worked by various mechanisms, such as enhancing the excretion of bile acids, inhibiting the absorption of cholesterol in the intestines, increasing the expression of hepatic LDL receptors, suppressing the activity of enzymes involved in cholesterol synthesis, and activating the adenosine monophosphate-activated protein kinase signalling pathway.
Collapse
Affiliation(s)
- Qian Ge
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yue Yan
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yang Luo
- Ningxia Institute of Science and Technology Development Strategy and Information, Yinchuan, China
| | - Tai Teng
- Ningxia Guolong Hospital Co., LTD, Yinchuan, China
| | - Caixia Cao
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Danqing Zhao
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Jing Zhang
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Caihong Li
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Wang Chen
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Binkun Yang
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Zicheng Yi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tengwen Chang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiang Chen
- Institute of Quality Standard and Testing Technology of Agricultural Products, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| |
Collapse
|
6
|
Xiao Q, Wang J, Wang L, Ding H. APOA1/C3/A4/A5 Gene Cluster at 11q23.3 and Lipid Metabolism Disorders: From Epigenetic Mechanisms to Clinical Practices. Biomedicines 2024; 12:1224. [PMID: 38927431 PMCID: PMC11201263 DOI: 10.3390/biomedicines12061224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The APOA1/C3/A4/A5 cluster is an essential component in regulating lipoprotein metabolism and maintaining plasma lipid homeostasis. A genome-wide association analysis and Mendelian randomization have revealed potential associations between genetic variants within this cluster and lipid metabolism disorders, including hyperlipidemia and cardiovascular events. An enhanced understanding of the complexity of gene regulation has led to growing recognition regarding the role of epigenetic variation in modulating APOA1/C3/A4/A5 gene expression. Intensive research into the epigenetic regulatory patterns of the APOA1/C3/A4/A5 cluster will help increase our understanding of the pathogenesis of lipid metabolism disorders and facilitate the development of new therapeutic approaches. This review discusses the biology of how the APOA1/C3/A4/A5 cluster affects circulating lipoproteins and the current progress in the epigenetic regulation of the APOA1/C3/A4/A5 cluster.
Collapse
Affiliation(s)
- Qianqian Xiao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Luyun Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| |
Collapse
|
7
|
Gylling H, Öörni K, Nylund L, Wester I, Simonen P. The profile of cholesterol metabolism does not interfere with the cholesterol-lowering efficacy of phytostanol esters. Clin Nutr 2024; 43:587-592. [PMID: 38301283 DOI: 10.1016/j.clnu.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND & AIMS Increasing evidence suggests that high cholesterol absorption efficiency enhances the risk of atherosclerotic cardiovascular diseases. It is not known whether inhibiting cholesterol absorption has different metabolic effects in high- vs. low cholesterol absorbers. We evaluated the effects of phytostanol esters on serum lipids and cholesterol metabolism in a post hoc study of three randomized, double-blind, controlled trials. The participants were classified into low (n = 20) and high (n = 21) cholesterol absorbers by median cholesterol absorption efficiency based on the plasma cholesterol absorption marker cholestanol at baseline. METHODS The participants consumed mayonnaise or margarine without or with phytostanol esters for six to nine weeks without other changes in the diet or lifestyle. Serum cholesterol, cholestanol, lathosterol, and faecal neutral sterols and bile acids were analysed by gas-liquid chromatography. According to power calculations, the size of the study population (n = 41) was appropriate. RESULTS During the control period, cholesterol synthesis, and faecal neutral sterols and bile acids were lower in high- vs. low absorbers (p < 0.05 for all). Phytostanol esters reduced low-density lipoprotein cholesterol by 10-13% in both groups, and directly measured cholesterol absorption efficiency by 41 ± 7% in low- and 47 ± 5% in high absorbers (p < 0.001 for all) without side effects. Cholesterol synthesis and faecal neutral sterols (p < 0.01) increased in both groups, more markedly in the high vs. low absorbers (p < 0.01). CONCLUSIONS Low cholesterol absorption combined with high faecal neutral sterol excretion are components of reverse cholesterol transport. Thus, high- vs. low absorbers had a more disadvantageous metabolic profile at baseline. In both groups, phytostanol esters induced favourable changes in serum, lipoprotein, and metabolic variables known to help in prevention of the development of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Helena Gylling
- Heart and Lung Center, Cardiology, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland.
| | | | | | | | - Piia Simonen
- Heart and Lung Center, Cardiology, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Yang XT, Wang J, Jiang YH, Zhang L, Du L, Li J, Liu F. Insight into the mechanism of gallstone disease by proteomic and metaproteomic characterization of human bile. Front Microbiol 2023; 14:1276951. [PMID: 38111640 PMCID: PMC10726133 DOI: 10.3389/fmicb.2023.1276951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Cholesterol gallstone disease is a prevalent condition that has a significant economic impact. However, the role of the bile microbiome in its development and the host's responses to it remain poorly understood. Methods In this study, we conducted a comprehensive analysis of microbial and human bile proteins in 40 individuals with either gallstone disease or gallbladder polyps. We employed a combined proteomic and metaproteomic approach, as well as meta-taxonomic analysis, functional pathway enrichment, and Western blot analyses. Results Our metaproteomic analysis, utilizing the lowest common ancestor algorithm, identified 158 microbial taxa in the bile samples. We discovered microbial taxa that may contribute to gallstone formation, including β-glucuronidase-producing bacteria such as Streptococcus, Staphylococcus, and Clostridium, as well as those involved in biofilm formation like Helicobacter, Cyanobacteria, Pseudomonas, Escherichia coli, and Clostridium. Furthermore, we identified 2,749 human proteins and 87 microbial proteins with a protein false discovery rate (FDR) of 1% and at least 2 distinct peptides. Among these proteins, we found microbial proteins crucial to biofilm formation, such as QDR3, ompA, ndk, pstS, nanA, pfIB, and dnaK. Notably, QDR3 showed a gradual upregulation from chronic to acute cholesterol gallstone disease when compared to polyp samples. Additionally, we discovered other microbial proteins that enhance bacterial virulence and gallstone formation by counteracting host oxidative stress, including sodB, katG, rbr, htrA, and ahpC. We also identified microbial proteins like lepA, rtxA, pckA, tuf, and tpiA that are linked to bacterial virulence and potential gallstone formation, with lepA being upregulated in gallstone bile compared to polyp bile. Furthermore, our analysis of the host proteome in gallstone bile revealed enhanced inflammatory molecular profiles, including innate immune molecules against microbial infections. Gallstone bile exhibited overrepresented pathways related to blood coagulation, folate metabolism, and the IL-17 pathway. However, we observed suppressed metabolic activities, particularly catabolic metabolism and transport activities, in gallstone bile compared to polyp bile. Notably, acute cholelithiasis bile demonstrated significantly impaired metabolic activities compared to chronic cholelithiasis bile. Conclusion Our study provides a comprehensive metaproteomic analysis of bile samples related to gallstone disease, offering new insights into the microbiome-host interaction and gallstone formation mechanism.
Collapse
Affiliation(s)
- Xue-Ting Yang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Jie Wang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Ying-Hua Jiang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Lei Zhang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Ling Du
- Key Laboratory of Digestive Cancer Full Cycle Monitoring and Precise Intervention of Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of Surgery, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Liu
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Simonen P, Öörni K, Sinisalo J, Strandberg TE, Wester I, Gylling H. High cholesterol absorption: A risk factor of atherosclerotic cardiovascular diseases? Atherosclerosis 2023; 376:53-62. [PMID: 37290267 DOI: 10.1016/j.atherosclerosis.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Lowering elevated low-density lipoprotein cholesterol (LDL-C) concentrations reduces the risk of atherosclerotic cardiovascular diseases (ASCVDs). However, increasing evidence suggests that cholesterol metabolism may also be involved in the risk reduction of ASCVD events. In this review, we discuss if the different profiles of cholesterol metabolism, with a focus on high cholesterol absorption, are atherogenic, and what could be the possible mechanisms. The potential associations of cholesterol metabolism and the risk of ASCVDs are evaluated from genetic, metabolic, and population-based studies and lipid-lowering interventions. According to these studies, loss-of-function genetic variations in the small intestinal sterol transporters ABCG5 and ABCG8 result in high cholesterol absorption associated with low cholesterol synthesis, low cholesterol elimination from the body, and a high risk of ASCVDs. In contrast, loss-of-function genetic variations in another intestinal sterol transporter, NPC1L1 result in low cholesterol absorption associated with high cholesterol synthesis, elevated cholesterol elimination from the body, and low risk of ASCVDs. Statin monotherapy is not sufficient to reduce the ASCVD risk in cases of high cholesterol absorption, and these individuals need combination therapy of statin with cholesterol absorption inhibition. High cholesterol absorption, i.e., >60%, is estimated to occur in approximately one third of a population, so taking it into consideration is important to optimise lipid-lowering therapy to prevent atherosclerosis and reduce the risk of ASCVD events.
Collapse
Affiliation(s)
- Piia Simonen
- Heart and Lung Center, Cardiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Wihuri Research Institute, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juha Sinisalo
- Heart and Lung Center, Cardiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Timo E Strandberg
- Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Center for Life-Course Health Research, University of Oulu, Oulu, Finland
| | | | - Helena Gylling
- Heart and Lung Center, Cardiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Raque M, Raev SA, Guo Y, Kick MK, Saif LJ, Vlasova AN. Host Cell Response to Rotavirus Infection with Emphasis on Virus-Glycan Interactions, Cholesterol Metabolism, and Innate Immunity. Viruses 2023; 15:1406. [PMID: 37515094 PMCID: PMC10385841 DOI: 10.3390/v15071406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Although rotavirus A (RVA) is the primary cause of acute viral gastroenteritis in children and young animals, mechanisms of its replication and pathogenesis remain poorly understood. We previously demonstrated that the neuraminidase-mediated removal of terminal sialic acids (SAs) significantly enhanced RVA-G9P[13] replication, while inhibiting RVA-G5P[7] replication. In this study, we compared the transcriptome responses of porcine ileal enteroids (PIEs) to G5P[7] vs. G9P[13] infections, with emphasis on the genes associated with immune response, cholesterol metabolism, and host cell attachment. The analysis demonstrated that G9P[13] infection led to a robust modulation of gene expression (4093 significantly modulated genes vs. 488 genes modulated by G5P[7]) and a significant modulation of glycosyltransferase-encoding genes. The two strains differentially affected signaling pathways related to immune response, with G9P[13] mostly upregulating and G5P[7] inhibiting them. Both RVAs modulated the expression of genes encoding for cholesterol transporters. G9P[13], but not G5P[7], significantly affected the ceramide synthesis pathway known to affect both cholesterol and glycan metabolism. Thus, our results highlight the unique mechanisms regulating cellular response to infection caused by emerging/re-emerging and historical RVA strains relevant to RVA-receptor interactions, metabolic pathways, and immune signaling pathways that are critical in the design of effective control strategies.
Collapse
Affiliation(s)
- Molly Raque
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Sergei A Raev
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Yusheng Guo
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Maryssa K Kick
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Linda J Saif
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| | - Anastasia N Vlasova
- Center for Food Animal Health Research Program, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 43210, USA
| |
Collapse
|
11
|
Zhang Y, Yi Y, Xiao X, Hu L, Xu J, Zheng D, Koc HC, Chan UI, Meng Y, Lu L, Liu W, Xu X, Shao N, Cheung ECW, Xu RH, Chen G. Definitive Endodermal Cells Supply an in vitro Source of Mesenchymal Stem/Stromal Cells. Commun Biol 2023; 6:476. [PMID: 37127734 PMCID: PMC10151361 DOI: 10.1038/s42003-023-04810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
Mesenchymal stem/Stromal cells (MSCs) have great therapeutic potentials, and they have been isolated from various tissues and organs including definitive endoderm (DE) organs, such as the lung, liver and intestine. MSCs have been induced from human pluripotent stem cells (hPSCs) through multiple embryonic lineages, including the mesoderm, neural crest, and extraembryonic cells. However, it remains unclear whether hPSCs could give rise to MSCs in vitro through the endodermal lineage. Here, we report that hPSC-derived, SOX17+ definitive endoderm progenitors can further differentiate to cells expressing classic MSC markers, which we name definitive endoderm-derived MSCs (DE-MSCs). Single cell RNA sequencing demonstrates the stepwise emergence of DE-MSCs, while endoderm-specific gene expression can be elevated by signaling modulation. DE-MSCs display multipotency and immunomodulatory activity in vitro and possess therapeutic effects in a mouse ulcerative colitis model. This study reveals that, in addition to the other germ layers, the definitive endoderm can also contribute to MSCs and DE-MSCs could be a cell source for regenerative medicine.
Collapse
Affiliation(s)
- Yumeng Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ye Yi
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xia Xiao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lingling Hu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jiaqi Xu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Dejin Zheng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ho Cheng Koc
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Un In Chan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Ya Meng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Biological Imaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Xiaoling Xu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Ningyi Shao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Edwin Chong Wing Cheung
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Ren-He Xu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|