1
|
Jofre FM, Queiroz SDS, Sanchez DA, Arruda PV, Santos JCD, Felipe MDGDA. Biotechnological potential of yeast cell wall: An overview. Biotechnol Prog 2024; 40:e3491. [PMID: 38934212 DOI: 10.1002/btpr.3491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The yeast cell wall is a complex structure whose main function is to protect the cell from physical and chemical damage, providing it with rigidity. It is composed of a matrix of covalently linked polysaccharides and proteins, including β-glucans, mannoproteins, and chitin, whose proportion can vary according to the yeast species and environmental conditions. The main components of the yeast cell wall have relevant properties that expand the possibilities of use in different industrial sectors, such as pharmaceutical, food, medical, veterinary, and cosmetic. Some applications include bioremediation, enzyme immobilization, animal feed, wine production, and hydrogel production. In the literature it is the description of the cell wall composition of model species like Saccharomyces cerevisiae and Candida albicans, however, it is important to know that this composition can vary according to the species or the culture medium conditions. Thus, understanding the structural composition of different species holds promise as an alternative to expanding the utilization of residual yeast from different bioprocesses. In the context of a circular economy, the conversion of residual yeast into valuable products is an attractive prospect for researchers aiming to develop sustainable technologies. This review provides an overview of yeast cell wall composition and its significance in biotechnological applications, considering prospects to increase the diversification of these compounds in industry.
Collapse
Affiliation(s)
- Fanny Machado Jofre
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Sarah de Souza Queiroz
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Diana Alva Sanchez
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Priscila Vaz Arruda
- Department of Bioprocess and Biotechnology Engineering, Federal University of Technology-Paraná (UTFPR), Toledo, Brazil
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | | |
Collapse
|
2
|
Kim HK, Choi Y, Kim KH, Byun Y, Kim TH, Kim JH, An SH, Bae D, Choi MK, Lee M, Kang G, Chung J, Kim S, Kwon K. Scalable production of siRNA-encapsulated extracellular vesicles for the inhibition of KRAS-mutant cancer using acoustic shock waves. J Extracell Vesicles 2024; 13:e12508. [PMID: 39323378 PMCID: PMC11424982 DOI: 10.1002/jev2.12508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as a potential delivery vehicle for nucleic-acid-based therapeutics, but challenges related to their large-scale production and cargo-loading efficiency have limited their therapeutic potential. To address these issues, we developed a novel "shock wave extracellular vesicles engineering technology" (SWEET) as a non-genetic, scalable manufacturing strategy that uses shock waves (SWs) to encapsulate siRNAs in EVs. Here, we describe the use of the SWEET platform to load large quantities of KRASG12C-targeting siRNA into small bovine-milk-derived EVs (sBMEVs), with high efficiency. The siRNA-loaded sBMEVs effectively silenced oncogenic KRASG12C expression in cancer cells; they inhibited tumour growth when administered intravenously in a non-small cell lung cancer xenograft mouse model. Our study demonstrates the potential for the SWEET platform to serve as a novel method that allows large-scale production of cargo-loaded EVs for use in a wide range of therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - DaeHo Bae
- Exollence Co., Ltd.SeoulRepublic of Korea
| | | | | | - Gwansuk Kang
- Division of Gastroenterology and Hepatology, School of MedicineStanford UniversityStanfordCaliforniaUSA
| | | | | | - Kihwan Kwon
- Exollence Co., Ltd.SeoulRepublic of Korea
- Department of Internal Medicine, College of MedicineEwha Womans UniversitySeoulRepublic of Korea
| |
Collapse
|
3
|
Ding Y, Yang N, Lu Y, Xu J, Rana K, Chen Y, Xu Z, Qian W, Wan H. Fusiform nanoparticle boosts efficient genetic transformation in Sclerotinia sclerotiorum. J Nanobiotechnology 2024; 22:494. [PMID: 39160572 PMCID: PMC11334516 DOI: 10.1186/s12951-024-02736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Sclerotinia sclerotiorum is a highly destructive phytopathogenic fungus that poses a significant threat to a wide array of crops. The current constraints in genetic manipulation techniques impede a thorough comprehension of its pathogenic mechanisms and the development of effective control strategies. RESULTS Herein, we present a highly efficient genetic transformation system for S. sclerotiorum, leveraging the use of fusiform nanoparticles, which are synthesized with FeCl3 and 2,6-diaminopyrimidine (DAP). These nanoparticles, with an average longitude length of 59.00 nm and a positively charged surface, facilitate the direct delivery of exogenous DNA into the mycelial cells of S. sclerotiorum, as well as successful integration with stable expression. Notably, this system circumvents fungal protoplast preparation and tedious recovery processes, streamlining the transformation process considerably. Furthermore, we successfully employed this system to generate S. sclerotiorum strains with silenced oxaloacetate acetylhydrolase-encoding gene Ss-oah1. CONCLUSIONS Our findings demonstrate the feasibility of using nanoparticle-mediated delivery as a rapid and reliable tool for genetic modification in S. sclerotiorum. Given its simplicity and high efficiency, it has the potential to significantly propel genetic research in filamentous fungi, offering new avenues for elucidating the intricacies of pathogenicity and developing innovative disease management strategies.
Collapse
Affiliation(s)
- Yijuan Ding
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Nan Yang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Yi Lu
- School of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, China
| | - Jiming Xu
- School of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, China
| | - Kusum Rana
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Yangui Chen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, China
| | - Wei Qian
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| | - Huafang Wan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
4
|
Nie H, Zhang Y, Li M, Wang W, Wang Z, Zheng J. Expression of microbial lipase in filamentous fungus Aspergillus niger: a review. 3 Biotech 2024; 14:172. [PMID: 38841267 PMCID: PMC11147998 DOI: 10.1007/s13205-024-03998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024] Open
Abstract
Lipase has high economic importance and is widely used in biodiesel, food, detergents, cosmetics, and pharmaceutical industries. The rapid development of synthetic biology and system biology has not only paved the way for comprehensively understanding the efficient operation mechanism of Aspergillus niger cell factories but also introduced a new technological system for creating and optimizing high-efficiency A. niger cell factories. In this review, all relevant data on microbial lipase enzyme sources and general properties are gathered and updated. The relationship between A. niger strain morphology and protein production is discussed. The safety of A. niger strain is investigated to ensure product safety. The biotechnologies and factors influencing lipase expression in A. niger are summarized. This review focuses on various strategies to improve lipase expression in A. niger. The summary of these methods and the application of the gene editing technology CRISPR/Cas9 system can further improve the efficiency of constructing the engineered lipase-producing A. niger.
Collapse
Affiliation(s)
- Hongmei Nie
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Yueting Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Mengjiao Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Weili Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
| |
Collapse
|
5
|
Dutta S, Houdinet G, NandaKafle G, Kafle A, Hawkes CV, Garcia K. Agrobacterium tumefaciens-mediated transformation of Nigrospora sp. isolated from switchgrass leaves and antagonistic toward plant pathogens. J Microbiol Methods 2023; 215:106849. [PMID: 37907117 DOI: 10.1016/j.mimet.2023.106849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Nigrospora is a diverse genus of fungi colonizing plants through endophytic, pathogenic, or saprobic interactions. Endophytic isolates can improve growth and development of host plants, as well as their resistance to microbial pathogens, but exactly how they do so remains poorly understood. Developing a reliable transformation method is crucial to investigate these mechanisms, in particular to identify pivotal genes for specific functions that correlate with specific traits. In this study, we identified eight isolates of Nigrospora sp. internally colonizing the leaves of switchgrass plants cultivated in North Carolina. Using an Agrobacterium tumefaciens-mediated transformation approach with control and GFP-expressing vectors, we report the first successful transformation of two Nigrospora isolates. Finally, we demonstrate that wild-type and transgenic isolates both negatively impact the growth of two plant pathogens in co-culture conditions, Bipolaris maydis and Parastagonospora nodorum, responsible for the Southern Leaf Blight and Septoria Nodorum Blotch diseases, respectively. The GFP-transformed strains developed here can therefore serve as accurate reporters of spatial interactions in future studies of Nigrospora and pathogens in the plant. Finally, the transformation method we describe lays the foundation for further genetic research on the Nigrospora genus to expand our mechanistic understanding of plant-endophyte interactions.
Collapse
Affiliation(s)
- Summi Dutta
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA; Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Gabriella Houdinet
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, USA
| | - Gitanjali NandaKafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Arjun Kafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Christine V Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, USA
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
6
|
Stepchenkova EI, Zadorsky SP, Shumega AR, Aksenova AY. Practical Approaches for the Yeast Saccharomyces cerevisiae Genome Modification. Int J Mol Sci 2023; 24:11960. [PMID: 37569333 PMCID: PMC10419131 DOI: 10.3390/ijms241511960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
The yeast S. cerevisiae is a unique genetic object for which a wide range of relatively simple, inexpensive, and non-time-consuming methods have been developed that allow the performing of a wide variety of genome modifications. Among the latter, one can mention point mutations, disruptions and deletions of particular genes and regions of chromosomes, insertion of cassettes for the expression of heterologous genes, targeted chromosomal rearrangements such as translocations and inversions, directed changes in the karyotype (loss or duplication of particular chromosomes, changes in the level of ploidy), mating-type changes, etc. Classical yeast genome manipulations have been advanced with CRISPR/Cas9 technology in recent years that allow for the generation of multiple simultaneous changes in the yeast genome. In this review we discuss practical applications of both the classical yeast genome modification methods as well as CRISPR/Cas9 technology. In addition, we review methods for ploidy changes, including aneuploid generation, methods for mating type switching and directed DSB. Combined with a description of useful selective markers and transformation techniques, this work represents a nearly complete guide to yeast genome modification.
Collapse
Affiliation(s)
- Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Sergey P. Zadorsky
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Andrey R. Shumega
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
| | - Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
7
|
Torres-Ortiz D, García-Alcocer G, Loske AM, Fernández F, Becerra-Becerra E, Esparza R, Gonzalez-Reyna MA, Estevez M. Green Synthesis and Antiproliferative Activity of Gold Nanoparticles of a Controlled Size and Shape Obtained Using Shock Wave Extracts from Amphipterygium adstringens. Bioengineering (Basel) 2023; 10:bioengineering10040437. [PMID: 37106624 PMCID: PMC10136038 DOI: 10.3390/bioengineering10040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
In this study, green chemistry was used as a tool to obtain gold nanoparticles using Amphipterygium adstringens extracts as a synthesis medium. Green ethanolic and aqueous extracts were obtained using ultrasound and shock wave-assisted extraction. Gold nanoparticles with sizes ranging between 100 and 150 nm were obtained with ultrasound aqueous extract. Interestingly, homogeneous quasi-spherical gold nanoparticles with sizes between 50 and 100 nm were achieved with shock wave aqueous-ethanolic extracts. Furthermore, 10 nm gold nanoparticles were obtained by the traditional methanolic macerate extraction method. The physicochemical characteristics, morphology, size, stability, and Z potential of the nanoparticles were determined using microscopic and spectroscopic techniques. The viability assay in leukemia cells (Jurkat) was performed using two different sets of gold nanoparticles, with final IC50 values of 87 µM and 94.7 µM, reaching a maximum cell viability decrease of 80% The results do not indicate a significant difference between the cytotoxic effects produced by the gold nanoparticles synthesized in this study and vincristine on normal lymphoblasts (CRL-1991).
Collapse
Affiliation(s)
- Daniela Torres-Ortiz
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Querétaro, Mexico
| | - Guadalupe García-Alcocer
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Querétaro, Mexico
- Correspondence: (G.G.-A.); (M.E.)
| | - Achim M. Loske
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Francisco Fernández
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Edgardo Becerra-Becerra
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Querétaro, Mexico
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Marlen Alexis Gonzalez-Reyna
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Miriam Estevez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico
- Correspondence: (G.G.-A.); (M.E.)
| |
Collapse
|
8
|
Gao J, Liu H, Zhang Z, Liang Z. Establishment, optimization, and application of genetic technology in Aspergillus spp. Front Microbiol 2023; 14:1141869. [PMID: 37025635 PMCID: PMC10071863 DOI: 10.3389/fmicb.2023.1141869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Aspergillus is widely distributed in nature and occupies a crucial ecological niche, which has complex and diverse metabolic pathways and can produce a variety of metabolites. With the deepening of genomics exploration, more Aspergillus genomic informations have been elucidated, which not only help us understand the basic mechanism of various life activities, but also further realize the ideal functional transformation. Available genetic engineering tools include homologous recombinant systems, specific nuclease based systems, and RNA techniques, combined with transformation methods, and screening based on selective labeling. Precise editing of target genes can not only prevent and control the production of mycotoxin pollutants, but also realize the construction of economical and efficient fungal cell factories. This paper reviewed the establishment and optimization process of genome technologies, hoping to provide the theoretical basis of experiments, and summarized the recent progress and application in genetic technology, analyzes the challenges and the possibility of future development with regard to Aspergillus.
Collapse
Affiliation(s)
- Jing Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huiqing Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Zhihong Liang,
| |
Collapse
|
9
|
Huang PH, Chen S, Shiver AL, Culver RN, Huang KC, Buie CR. M-TUBE enables large-volume bacterial gene delivery using a high-throughput microfluidic electroporation platform. PLoS Biol 2022; 20:e3001727. [PMID: 36067229 PMCID: PMC9481174 DOI: 10.1371/journal.pbio.3001727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/16/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
Conventional cuvette-based and microfluidics-based electroporation approaches for bacterial gene delivery have distinct advantages, but they are typically limited to relatively small sample volumes, reducing their utility for applications requiring high throughput such as the generation of mutant libraries. Here, we present a scalable, large-scale bacterial gene delivery approach enabled by a disposable, user-friendly microfluidic electroporation device requiring minimal device fabrication and straightforward operation. We demonstrate that the proposed device can outperform conventional cuvettes in a range of situations, including across Escherichia coli strains with a range of electroporation efficiencies, and we use its large-volume bacterial electroporation capability to generate a library of transposon mutants in the anaerobic gut commensal Bifidobacterium longum.
Collapse
Affiliation(s)
- Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sijie Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Anthony L. Shiver
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Rebecca Neal Culver
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - Cullen R. Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
10
|
Guillaume-Gentil O, Gäbelein CG, Schmieder S, Martinez V, Zambelli T, Künzler M, Vorholt JA. Injection into and extraction from single fungal cells. Commun Biol 2022; 5:180. [PMID: 35233064 PMCID: PMC8888671 DOI: 10.1038/s42003-022-03127-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022] Open
Abstract
The direct delivery of molecules and the sampling of endogenous compounds into and from living cells provide powerful means to modulate and study cellular functions. Intracellular injection and extraction remain challenging for fungal cells that possess a cell wall. The most common methods for intracellular delivery into fungi rely on the initial degradation of the cell wall to generate protoplasts, a step that represents a major bottleneck in terms of time, efficiency, standardization, and cell viability. Here, we show that fluidic force microscopy enables the injection of solutions and cytoplasmic fluid extraction into and out of individual fungal cells, including unicellular model yeasts and multicellular filamentous fungi. The approach is strain- and cargo-independent and opens new opportunities for manipulating and analyzing fungi. We also perturb individual hyphal compartments within intact mycelial networks to study the cellular response at the single cell level. Guillaume-Gentil et al. describe a method that employs a modified AFM tip for selectively sampling from and injecting into individual fungal cells of differing morphology. The authors describe extensive modifications on their system previously used for mammalian cells to overcome many of the challenges associated with working on single fungal cells.
Collapse
Affiliation(s)
| | | | - Stefanie Schmieder
- Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland.,Division of Gastroenterology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Vincent Martinez
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Tomaso Zambelli
- Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Markus Künzler
- Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
11
|
Abstract
Transformation of DNA into cells of the budding yeast Saccharomyces cerevisiae and other industrially important yeasts is most commonly performed using chemical-based methods. Current protocols typically involve exposure of the cells to lithium ions in a solution containing the crowding agent polyethylene glycol (PEG), often in conjunction with other reagents such as dimethyl sulfoxide (DMSO) that promote destabilization of the cell wall and/or cell envelope. Recent work has demonstrated that it is possible to achieve high transformation efficiencies with early stationary phase cells, i.e., small overnight liquid cell cultures, using methods that are rapid and readily scalable for high-throughput projects. Herein, we describe carrier DNAs, chemical reagents, and cell growth media that permit transformation of yeast cells with either plasmids or linear DNA fragments with high efficiency.
Collapse
Affiliation(s)
- O'Taveon R Fitzgerald
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Nestor D Rodriguez
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - L Kevin Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA.
| |
Collapse
|
12
|
Chen F, Ye J, Liu W, Chio C, Wang W, Qin W. Knockout of a highly GC-rich gene in Burkholderia pyrrocinia by recombineering with freeze-thawing transformation. MOLECULAR PLANT PATHOLOGY 2021; 22:843-857. [PMID: 33942460 PMCID: PMC8232026 DOI: 10.1111/mpp.13058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 05/12/2023]
Abstract
Genetic transformation is a valuable and essential method that provides powerful insights into the gene function of microorganisms and contributes to the construction of engineered bacteria. Here, we developed a novel genetic transformation system to easily knock out a highly GC-rich gene (74.71% GC) from Burkholderia pyrrocinia JK-SH007, a biocontrol strain of poplar canker disease. This system revealed a reliable selectable marker (trimethoprim resistance gene, Tmp) and a simplified, efficient transformation method (6,363.64 CFU/μg, pHKT2) that was developed via freeze-thawing. The knockout recombineering of B. pyrrocinia JK-SH007 was achieved through a suicide plasmid with a three-fragment mutagenesis construct. The three-fragment cassette for mutagenesis was generated by overlap extension and touchdown PCRs and composed of Tmp flanked by GC-rich upstream and downstream fragments from B. pyrrocinia JK-SH007. The mutant strain (ΔBpEG), which was verified by PCR, lost 93.3% of its ability to degrade carboxymethyl cellulose over 40 days. Overall, this system may contribute to future research on B. pyrrocinia traits.
Collapse
Affiliation(s)
- Feifei Chen
- College of Forestry and Co‐Innovation Center for Sustainable Forestry in Southern ChinaJiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingJiangsuChina
- Department of BiologyLakehead UniversityThunder BayOntarioCanada
| | - Jianren Ye
- College of Forestry and Co‐Innovation Center for Sustainable Forestry in Southern ChinaJiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingJiangsuChina
| | - Wanhui Liu
- College of Forestry and Co‐Innovation Center for Sustainable Forestry in Southern ChinaJiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingJiangsuChina
| | - Chonlong Chio
- Department of BiologyLakehead UniversityThunder BayOntarioCanada
| | - Wendy Wang
- Department of BiologyLakehead UniversityThunder BayOntarioCanada
| | - Wensheng Qin
- Department of BiologyLakehead UniversityThunder BayOntarioCanada
| |
Collapse
|
13
|
Gutiérrez S, Lauersen KJ. Gene Delivery Technologies with Applications in Microalgal Genetic Engineering. BIOLOGY 2021; 10:265. [PMID: 33810286 PMCID: PMC8067306 DOI: 10.3390/biology10040265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022]
Abstract
Microalgae and cyanobacteria are photosynthetic microbes that can be grown with the simple inputs of water, carbon dioxide, (sun)light, and trace elements. Their engineering holds the promise of tailored bio-molecule production using sustainable, environmentally friendly waste carbon inputs. Although algal engineering examples are beginning to show maturity, severe limitations remain in the transformation of multigene expression cassettes into model species and DNA delivery into non-model hosts. This review highlights common and emerging DNA delivery methods used for other organisms that may find future applications in algal engineering.
Collapse
Affiliation(s)
| | - Kyle J. Lauersen
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
14
|
Ullah M, Xia L, Xie S, Sun S. CRISPR/Cas9-based genome engineering: A new breakthrough in the genetic manipulation of filamentous fungi. Biotechnol Appl Biochem 2020; 67:835-851. [PMID: 33179815 DOI: 10.1002/bab.2077] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Filamentous fungi have several industrial, environmental, and medical applications. However, they are rarely utilized owing to the limited availability of full-genome sequences and genetic manipulation tools. Since the recent discovery of the full-genome sequences for certain industrially important filamentous fungi, CRISPR/Cas9 technology has drawn attention for the efficient development of engineered strains of filamentous fungi. CRISPR/Cas9 genome editing has been successfully applied to diverse filamentous fungi. In this review, we briefly discuss the use of common genetic transformation techniques as well as CRISPR/Cas9-based systems in filamentous fungi. Furthermore, we describe potential limitations and challenges in the practical application of genome engineering of filamentous fungi. Finally, we provide suggestions and highlight future research prospects in the area.
Collapse
Affiliation(s)
- Mati Ullah
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Xia
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Sun
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Wang XF, Tao G, Wen P, Ren BX, Pang CQ, Du CX. Damage to the DPPC Membrane Induced by Shock Waves: Molecular Dynamics Simulations. J Phys Chem B 2020; 124:9535-9545. [DOI: 10.1021/acs.jpcb.0c06077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao-feng Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Gang Tao
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peng Wen
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bao-xiang Ren
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chun-qiao Pang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chang-xing Du
- College of Zijin, Nanjing University of Science and Technology, Nanjing 210046, China
| |
Collapse
|
16
|
Li C, Zhou J, Du G, Chen J, Takahashi S, Liu S. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol Adv 2020; 44:107630. [PMID: 32919011 DOI: 10.1016/j.biotechadv.2020.107630] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
Abstract
Aspergillus niger has become one of the most important hosts for food enzyme production due to its unique food safety characteristics and excellent protein secretion systems. A series of food enzymes such as glucoamylase have been commercially produced by A. niger strains, making this species a suitable platform for the engineered of strains with improved enzyme production. However, difficulties in genetic manipulations and shortage of expression strategies limit the progress in this regard. Moreover, several mycotoxins have recently been detected in some A. niger strains, which raises the necessity for a regulatory approval process for food enzyme production. With robust strains, processing engineering strategies are also needed for producing the enzymes on a large scale, which is also challenging for A. niger, since its culture is aerobic, and non-Newtonian fluid properties are developed during submerged culture, making mixing and aeration very energy-intensive. In this article, the progress and challenges of developing A. niger for the production of food enzymes are reviewed, including its genetic manipulations, strategies for more efficient production of food enzymes, and elimination of mycotoxins for product safety.
Collapse
Affiliation(s)
- Cen Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
17
|
Lin J, Fan Y, Lin X. Transformation of Cryptococcus neoformans by electroporation using a transient CRISPR-Cas9 expression (TRACE) system. Fungal Genet Biol 2020; 138:103364. [PMID: 32142753 DOI: 10.1016/j.fgb.2020.103364] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/13/2020] [Accepted: 02/23/2020] [Indexed: 12/26/2022]
Abstract
The basidiomycete Cryptococcus neoformans is not only a clinically important pathogen, but also a model organism for studying microbial pathogenesis and eukaryotic biology. One key factor behind its rise as a model organism is its genetic amenability. The widely used methods for transforming the C. neoformans species complex are Agrobacterium-mediated transformation (AMT) for random insertional mutagenesis and biolistic transformation for targeted mutagenesis. Electroporation was introduced to C. neoformans in early 1990s. Although electroporation is economic and yields a large number of transformants, introduced DNA rarely integrates into cryptococcal genome, which limits its use. Biolistic transformation, although costly and inefficient, has been the only method used in targeted mutagenesis in the past two decades. Several modifications, including the use of a donor DNA with split markers, a drug-resistant selection marker, and a recipient strain deficient in non-homologous end joining (NHEJ), have since modestly increased the frequency of genome integration and the rate of homologous replacement of the DNA introduced by electroporation. However, electroporation was not the method of choice for transformation until the recent adoption of CRISPR-Cas9 systems. We have developed a Transient CRISPR-Cas9 coupled with Electroporation System (TRACE), which dramatically facilitates targeted mutagenesis in the Cryptococcus species complex. TRACE combines the high transformation efficiency of electroporation with the high rates of DNA integration due to the transiently expressed CRISPR-Cas9. Here, we briefly discussed the history of electroporation for Cryptococcus transformation and provided detailed procedures for electroporation and the cassettes construction of the TRACE system for various genetic manipulations.
Collapse
Affiliation(s)
- Jianfeng Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Yumeng Fan
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
18
|
Villena GK, Kitazono AA, Hernández-Macedo M L. Bioengineering Fungi and Yeast for the Production of Enzymes, Metabolites, and Value-Added Compounds. Fungal Biol 2020. [DOI: 10.1007/978-3-030-41870-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Díaz A, Villanueva P, Oliva V, Gil-Durán C, Fierro F, Chávez R, Vaca I. Genetic Transformation of the Filamentous Fungus Pseudogymnoascus verrucosus of Antarctic Origin. Front Microbiol 2019; 10:2675. [PMID: 31824460 PMCID: PMC6883257 DOI: 10.3389/fmicb.2019.02675] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/04/2019] [Indexed: 11/24/2022] Open
Abstract
Cold-adapted fungi isolated from Antarctica, in particular those belonging to the genus Pseudogymnoascus, are producers of secondary metabolites with interesting bioactive properties as well as enzymes with potential biotechnological applications. However, at genetic level, the study of these fungi has been hindered by the lack of suitable genetic tools such as transformation systems. In fungi, the availability of transformation systems is a key to address the functional analysis of genes related with the production of a particular metabolite or enzyme. To the best of our knowledge, the transformation of Pseudogymnoascus strains of Antarctic origin has not been achieved yet. In this work, we describe for the first time the successful transformation of a Pseudogymnoascus verrucosus strain of Antarctic origin, using two methodologies: the polyethylene glycol (PEG)-mediated transformation, and the electroporation of germinated conidia. We achieved transformation efficiencies of 15.87 ± 5.16 transformants per μg of DNA and 2.67 ± 1.15 transformants per μg of DNA for PEG-mediated transformation and electroporation of germinated conidia, respectively. These results indicate that PEG-mediated transformation is a very efficient method for the transformation of this Antarctic fungus. The genetic transformation of Pseudogymnoascus verrucosus described in this work represents the first example of transformation of a filamentous fungus of Antarctic origin.
Collapse
Affiliation(s)
- Anaí Díaz
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Villanueva
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente Oliva
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos Gil-Durán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Francisco Fierro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
20
|
Guiney EL, Zhu L, Sardana R, Emr SD, Baile MG. Methods for studying the regulation of membrane traffic by ubiquitin and the ESCRT pathway. Methods Enzymol 2019; 619:269-291. [PMID: 30910024 DOI: 10.1016/bs.mie.2018.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Covalent modification of proteins with ubiquitin dynamically regulates their function and fate. The ubiquitination of most plasma membrane proteins initiates endocytosis and ESCRT-mediated sorting to the lysosomal lumen for degradation. Powerful genetic approaches in the budding yeast Saccharomyces cerevisiae have been particularly instrumental in the discovery and elucidation of these molecular mechanisms, which are conserved in all eukaryotes. Here we provide two detailed protocols and tools for studying ubiquitination-dependent membrane trafficking mechanisms in yeast. The first utilizes fusions between a protein of interest and an auxotrophic marker to screen for mutants that affect ubiquitin-mediated endocytosis. The second method artificially ubiquitinates a protein of interest, allowing downstream trafficking steps to be studied independently from the regulatory signals that initiate endocytosis.
Collapse
Affiliation(s)
- Evan L Guiney
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Lu Zhu
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Richa Sardana
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Scott D Emr
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States.
| | - Matthew G Baile
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
21
|
Effect of pressure profile of shock waves on lipid membrane deformation. PLoS One 2019; 14:e0212566. [PMID: 30789948 PMCID: PMC6383940 DOI: 10.1371/journal.pone.0212566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/05/2019] [Indexed: 11/19/2022] Open
Abstract
Use of shock waves to temporarily increase the permeability of the cell membrane is a promising approach in drug delivery and gene therapy to allow the translocation of macromolecules and small polar molecules into the cytoplasm. Our understanding of how the characteristics of the pressure profile of shock waves, such as peak pressure and pulse duration, influences membrane properties is limited. Here we study the response of lipid bilayer membranes to shock pulses with different pressure profiles using atomistic molecular dynamics simulations. From our simulation results, we find that the transient deformation/disordering of the membrane depends on both the magnitude and the pulse duration of the pressure profile of the shock pulse. For a low pressure impulse, peak pressure has a dominant effect on membrane structural changes, while for the high pressure impulse, we find that there exists an optimal pulse duration at which membrane deformation/disordering is maximized.
Collapse
|
22
|
Abstract
Electroporation has been an established tool for DNA delivery into prokaryotic and eukaryotic cells, thus facilitating basic research studies and improving medical treatments. Here we describe its use for introduction of phage genomic DNA into Escherichia coli cells, including preparation of electrocompetent cells, electric pulse optimization and recovery of electrotransformed cells. The technique can also be adapted for other bacterial species.
Collapse
|
23
|
López-Marín LM, Rivera AL, Fernández F, Loske AM. Shock waves: A non-shocking way for targeted therapies?: Reply to comments on "Shock wave-induced permeabilization of mammalian cells". Phys Life Rev 2018; 26-27:53-56. [PMID: 30097287 DOI: 10.1016/j.plrev.2018.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Luz M López-Marín
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, Qro., Mexico
| | - Ana Leonor Rivera
- Instituto de Ciencias Nucleares & Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Francisco Fernández
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, Qro., Mexico
| | - Achim M Loske
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, Qro., Mexico.
| |
Collapse
|
24
|
Govender NT, Mahmood M, Seman IA, Mui-Yun W. Basidiospore and Protoplast Regeneration from Raised Fruiting Bodies of Pathogenic Ganoderma boninense. Pol J Microbiol 2018; 65:383-388. [PMID: 29334072 DOI: 10.5604/17331331.1215619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ganoderma boninense, a phytopathogenic white rot fungus had sought minimal genetic characterizations despite huge biotechnological potentials. Thus, efficient collection of fruiting body, basidiospore and protoplast of G. boninense is described. Matured basidiocarp raised under the glasshouse conditions yielded a total of 8.3 × 104 basidiospores/ml using the low speed centrifugation technique. Mycelium aged 3-day-old treated under an incubation period of 3 h in lysing enzyme from Trichoderma harzianum (10 mg/ml) suspended in osmotic stabilizer (0.6 M potassium chloride and 20 mM dipotassium phosphate buffer) yielded the highest number of viable protoplasts (8.9 × 106 single colonies) among all possible combinations tested (regeneration media, age of mycelium, osmotic stabilizer, digestive enzyme and incubation period).
Collapse
Affiliation(s)
- Nisha T Govender
- Institute of Tropical Agriculture, Universiti Putra Malaysia, Selangor D.E., Malaysia
| | - Maziah Mahmood
- Institute of Tropical Agriculture, Universiti Putra Malaysia, Selangor D.E., Malaysia; Department of Biochemistry and Biomolecular Sciences, Faculty of Biotechnology, Universiti Putra Malaysia, Selangor D.E., Malaysia
| | - Idris A Seman
- Malaysian Palm Oil Board (MPOB), Persiaran Institusi, Bandar Baru Bangi, Selangor D.E., Malaysia
| | - Wong Mui-Yun
- Institute of Tropical Agriculture, Universiti Putra Malaysia, Selangor D.E., Malaysia; Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Selangor D.E., Malaysia
| |
Collapse
|
25
|
He Y, Wang B, Chen W, Cox RJ, He J, Chen F. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnol Adv 2018; 36:739-783. [DOI: 10.1016/j.biotechadv.2018.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
|
26
|
López-Marín LM, Rivera AL, Fernández F, Loske AM. Shock wave-induced permeabilization of mammalian cells. Phys Life Rev 2018; 26-27:1-38. [PMID: 29685859 DOI: 10.1016/j.plrev.2018.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/12/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022]
Abstract
Controlled permeabilization of mammalian cell membranes is fundamental to develop gene and cell therapies based on macromolecular cargo delivery, a process that emerged against an increasing number of health afflictions, including genetic disorders, cancer and infections. Viral vectors have been successfully used for macromolecular delivery; however, they may have unpredictable side effects and have been limited to life-threatening cases. Thus, several chemical and physical methods have been explored to introduce drugs, vaccines, and nucleic acids into cells. One of the most appealing physical methods to deliver genes into cells is shock wave-induced poration. High-speed microjets of fluid, emitted due to the collapse of microbubbles after shock wave passage, represent the most significant mechanism that contributes to cell membrane poration by this technique. Herein, progress in shock wave-induced permeabilization of mammalian cells is presented. After covering the main concepts related to molecular strategies whose applications depend on safer drug delivery methods, the physics behind shock wave phenomena is described. Insights into the use of shock waves for cell membrane permeation are discussed, along with an overview of the two major biomedical applications thereof-i.e., genetic modification and anti-cancer shock wave-assisted chemotherapy. The aim of this review is to summarize 30 years of data showing underwater shock waves as a safe, noninvasive method for macromolecular delivery into mammalian cells, encouraging the development of further research, which is still required before the introduction of this promising tool into clinical practice.
Collapse
Affiliation(s)
- Luz M López-Marín
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, Qro., Mexico.
| | - Ana Leonor Rivera
- Instituto de Ciencias Nucleares & Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico.
| | - Francisco Fernández
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, Qro., Mexico.
| | - Achim M Loske
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, Qro., Mexico.
| |
Collapse
|
27
|
Florencio CS, Brandão FAS, Teixeira MDM, Bocca AL, Felipe MSS, Vicente VA, Fernandes L. Genetic manipulation of Fonsecaea pedrosoi using particles bombardment and Agrobacterium mediated transformation. Microbiol Res 2018; 207:269-279. [PMID: 29458863 DOI: 10.1016/j.micres.2018.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/04/2017] [Accepted: 01/01/2018] [Indexed: 11/24/2022]
Abstract
Fonsecaea pedrosoi, a melanized fungal pathogen that causes Chromoblastomycosis, a human disease with a worldwide distribution. Biolistic is a widely used technique for direct delivery of genetic material into intact cells by particles bombardment. Another well-established transformation method is Agrobacterium-mediated transformation (ATMT), which involves the transfer of a T-DNA from the bacterium to the target cells. In F. pedrosoi there are no reports of established protocols for genetic transformation, which require optimization of physical and biological parameters. In this work, intact conidia of F. pedrosoi were particle bombarded and subjected to ATMT. In addition, we proposed hygromycin B, nourseothricin and neomycin as dominant selective markers for F. pedrosoi and vectors were constructed. We tested two parameters for biolistic: the distance of the particles to the target cells and time of cells recovery in nonselective medium. The biolistic efficiency was 37 transformants/μg of pFpHYG, and 45 transformants/μg of pAN7.1. Transformants expressing GFP were successfully obtained by biolistic. A co-culture ratio of 10: 1 (bacterium: conidia) and co-incubation time of 72 h yielded the largest number of transformants after ATMT. Southern blot analysis showed the number of foreign DNA insertion into the genome is dependent upon the plasmid used to generate the mutants. This work describes for the first time two efficient methods for genetic modification of Fonsecaea and these results open new avenues to better understand the biology and pathogenicity of the main causal agent of this neglected disease.
Collapse
Affiliation(s)
- Camille Silva Florencio
- Programa de Pós-graduação em Ciências e Tecnologias em Saúde, Faculdade de Ceilândia, Universidade de Brasília, Brasília, DF, Brazil; Laboratório de Imunologia Aplicada, Instituto de Biologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil.
| | - Fabiana Alves Silva Brandão
- Laboratório de Imunologia Aplicada, Instituto de Biologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil.
| | | | - Anamélia Lorenzetti Bocca
- Laboratório de Imunologia Aplicada, Instituto de Biologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil.
| | | | - Vânia Aparecida Vicente
- Programa de Pós-graduação em Engenharia de Bioprocessos e Biotecnologia, Setor de Ciências Biológicas, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - Larissa Fernandes
- Programa de Pós-graduação em Ciências e Tecnologias em Saúde, Faculdade de Ceilândia, Universidade de Brasília, Brasília, DF, Brazil; Laboratório de Imunologia Aplicada, Instituto de Biologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil; Programa de Pós-graduação em Engenharia de Bioprocessos e Biotecnologia, Setor de Ciências Biológicas, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
28
|
Novickij V, Švedienė J, Paškevičius A, Markovskaja S, Girkontaitė I, Zinkevičienė A, Lastauskienė E, Novickij J. Pulsed electric field-assisted sensitization of multidrug-resistant Candida albicans to antifungal drugs. Future Microbiol 2017; 13:535-546. [PMID: 29227694 DOI: 10.2217/fmb-2017-0245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM Determine the influence of pH on the inactivation efficiency of Candida albicans in pulsed electric fields (PEF) and evaluate the possibilities for sensitization of a drug-resistant strain to antifungal drugs. MATERIALS & METHODS The effects of PEF (2.5-25 kVcm-1) with fluconazole, terbinafine and naftifine were analyzed at a pH range of 3.0-9.0. Membrane permeabilization was determined by flow cytometry and propidium iodide. RESULTS PEF induced higher inactivation of C. albicans at low pH and increased sensitivity to terbinafine and naftifine to which the strain was initially resistant. Up to 5 log reduction in cell survival was achieved. CONCLUSION A proof of concept that electroporation can be used to sensitize drug-resistant microorganisms was presented, which is promising for treating biofilm-associated infections.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko St 41, 03227 Vilnius, Lithuania
| | - Jurgita Švedienė
- Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos St 2, 08412 Vilnius, Lithuania
| | - Algimantas Paškevičius
- Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos St 2, 08412 Vilnius, Lithuania.,Laboratory of Microbiology of the Centre of Laboratory Medicine, Vilnius University Hospital Santariškių Clinics, Santariškių St 2, 08661 Vilnius, Lithuania
| | - Svetlana Markovskaja
- Laboratory of Mycology, Nature Research Centre, Žaliųjų ežerų St 49, 08406 Vilnius, Lithuania
| | - Irutė Girkontaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Santariškių St 5, 08406 Vilnius, Lithuania
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Santariškių St 5, 08406 Vilnius, Lithuania
| | - Eglė Lastauskienė
- Department of Microbiology & Biotechnology, Vilnius University, Sauletekio al. 7, 10257 Vilnius, Lithuania
| | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko St 41, 03227 Vilnius, Lithuania
| |
Collapse
|
29
|
Štafa A, Miklenić MS, Zandona A, Žunar B, Čadež N, Petković H, Svetec IK. In Saccharomyces cerevisiae gene targeting fidelity depends on a transformation method and proportion of the overall length of the transforming and targeted DNA. FEMS Yeast Res 2017. [DOI: 10.1093/femsyr/fox041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anamarija Štafa
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Marina Svetec Miklenić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Antonio Zandona
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Bojan Žunar
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| | - Neža Čadež
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Hrvoje Petković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Ivan Krešimir Svetec
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, 10000 Zagreb, Croatia
| |
Collapse
|
30
|
|
31
|
Yu SC, Dawson A, Henderson AC, Lockyer EJ, Read E, Sritharan G, Ryan M, Sgroi M, Ngou PM, Woodruff R, Zhang R, Ren Teen Chia T, Liu Y, Xiang Y, Spanu PD. Nutrient supplements boost yeast transformation efficiency. Sci Rep 2016; 6:35738. [PMID: 27760994 PMCID: PMC5071762 DOI: 10.1038/srep35738] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/04/2016] [Indexed: 11/30/2022] Open
Abstract
Efficiency of yeast transformation is determined by the rate of yeast endocytosis. The aim of this study was to investigate the effect of introducing amino acids and other nutrients (inositol, adenine, or p-aminobenzoic acid) in the transformation medium to develop a highly efficient yeast transformation protocol. The target of rapamycin complex 1 (TORC1) kinase signalling complex influences the rate of yeast endocytosis. TORC signaling is induced by amino acids in the media. Here, we found that increasing the concentration of amino acids and other nutrients in the growth media lead to an increase yeast transformation efficiency up to 107 CFU per μg plasmid DNA and per 108 cells with a 13.8 kb plasmid DNA. This is over 130 times that of current published methods. This improvement may facilitate more efficient experimentation in which transformation efficiency is critical, such as yeast two-hybrid screening.
Collapse
Affiliation(s)
- Sheng-Chun Yu
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Alexander Dawson
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Alyssa C. Henderson
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Eloise J. Lockyer
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Emily Read
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Gayathri Sritharan
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Marjah Ryan
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Mara Sgroi
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Pok M. Ngou
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Rosie Woodruff
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Ruifeng Zhang
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Travis Ren Teen Chia
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Yu Liu
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Yiyu Xiang
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Pietro D. Spanu
- Department of Life Sciences, South Kensington Campus, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
32
|
Kotnik T, Weaver JC. Abiotic Gene Transfer: Rare or Rampant? J Membr Biol 2016; 249:623-631. [PMID: 27067073 DOI: 10.1007/s00232-016-9897-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/05/2016] [Indexed: 11/25/2022]
Abstract
Phylogenetic studies reveal that horizontal gene transfer (HGT) plays a prominent role in evolution and genetic variability of life. Five biotic mechanisms of HGT among prokaryotic organisms have been extensively characterized: conjugation, competence, transduction, gene transfer agent particles, and transitory fusion with recombination, but it is not known whether they can account for all natural HGT. It is even less clear how HGT could have occurred before any of these mechanisms had developed. Here, we consider contemporary conditions and experiments on microorganisms to estimate possible roles of abiotic HGT-currently and throughout evolution. Candidate mechanisms include freeze-and-thaw, microbeads-agitation, and electroporation-based transformation, and we posit that these laboratory techniques have analogues in nature acting as mechanisms of abiotic HGT: freeze-and-thaw cycles in polar waters, agitation by sand at foreshores and riverbeds, and lightning-triggered electroporation in near-surface aqueous habitats. We derive conservative order-of-magnitude estimates for rates of microorganisms subjected to freeze-and-thaw cycles, sand agitation, and lightning-triggered electroporation, at 1024, 1019, and 1017 per year, respectively. Considering the yield of viable transformants, which is by far the highest in electroporation, we argue this may still favor lightning-triggered transformation over the other two mechanisms. Electroporation-based gene transfer also appears to be the most general of these abiotic candidates, and perhaps even of all known HGT mechanisms. Future studies should provide improved estimates of gene transfer rates and cell viability, currently and in the past, but to assess the importance of abiotic HGT in nature will likely require substantial progress-also in knowledge of biotic HGT.
Collapse
Affiliation(s)
- Tadej Kotnik
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| | - James C Weaver
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
33
|
Li L, Yang T, Hu C, Ju X, Hu C, Tang B. Transformation of the yeast Trichosporonoides oedocephalis. Antonie van Leeuwenhoek 2015; 109:305-9. [PMID: 26671413 DOI: 10.1007/s10482-015-0633-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
The osmotolerant yeast, Trichosporonoides oedocephalis, is an excellent producer of erythritol, which has wide industrial applications. In this study, we developed an efficient transformation method for T. oedocephalis. To evaluate the T. oedocephalis transformation, we constructed a DNA fragment (loxP-Kan-loxP/Cre system) that was targeted to the mitogen-activated protein kinase HOG1 gene. Transformants were selected on plates containing G418 and response surface methodology was employed to obtain optimum transformation conditions. Optimal transformation could be achieved at an incubation time of 40 min, when the concentration of zymolyase-100T was 30 µg/mL, and when 100 mM CaCl2 was added to the mixture. The predicted optimal transformation efficiency was 133 transformants per µg of DNA. This novel method will facilitate studies in synthetic biology and metabolic engineering of T. oedocephalis.
Collapse
Affiliation(s)
- Liangzhi Li
- School of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China. .,Key Laboratory of New Energy and Low-carbon Technology of Suzhou City, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Tianyi Yang
- School of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Chao Hu
- School of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.,School of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Xin Ju
- School of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Cuiying Hu
- School of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Bingyu Tang
- School of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| |
Collapse
|
34
|
|
35
|
Rivera AL, Magaña-Ortíz D, Gómez-Lim M, Fernández F, Loske AM. When the boundaries between physics and biology blur: A promising future for fungi as producers of valuable recombinant proteins. Phys Life Rev 2014; 11:217-9. [DOI: 10.1016/j.plrev.2014.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 11/24/2022]
|
36
|
What I cannot create, I do not understand. Phys Life Rev 2014; 11:208-9. [DOI: 10.1016/j.plrev.2014.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 11/23/2022]
|
37
|
Ortiz-Vázquez E. Physics and biology, two good partners: Comment on "Physical methods for genetic transformation of fungi and yeast" by Ana Leonor Rivera, Denis Magaña-Ortíz, Miguel Gómez-Lim, Francisco Fernández, Achim M. Loske. Phys Life Rev 2014; 11:206-7. [PMID: 24747022 DOI: 10.1016/j.plrev.2014.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Elizabeth Ortiz-Vázquez
- División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Mérida, Av. Tecnológico s/n Km. 4.5, CP 97118, Mérida, Yuc, Mexico
| |
Collapse
|
38
|
Moosavi-Nejad S, Hosseini SHR. Current trends in bioelectrics for reversible cell membrane manipulation: Comment on "Physical methods for genetic transformation of fungi and yeast" by Rivera et al. Phys Life Rev 2014; 11:212-4. [PMID: 24731686 DOI: 10.1016/j.plrev.2014.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Affiliation(s)
- S Moosavi-Nejad
- Bioelectrics Department, Institute of Pulsed Power Science and Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan; Department of Anatomy, School of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - S H R Hosseini
- Bioelectrics Department, Institute of Pulsed Power Science and Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
39
|
Gold SE. Let's get physical!: Comment on "Physical methods for genetic transformation of fungi and yeast" by Ana L. Rivera, Denis Magaña-Ortíz, Miguel Gómez-Lim, Francisco Fernández and Achim M. Loske. Phys Life Rev 2014; 11:215-6. [PMID: 24721713 DOI: 10.1016/j.plrev.2014.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 11/15/2022]
Affiliation(s)
- Scott E Gold
- Toxicology and Mycotoxin Research Unit, Russell Research Center, USDA Agricultural Research Service, Athens, GA 30605, USA
| |
Collapse
|
40
|
Arellano-Carbajal F. Fungi learn how to surf big waves: Comment on "Physical methods for genetic transformation of fungi and yeast" by Ana Leonor Rivera, Denis Magaña-Ortíz, Miguel Gómez-Lim, Francisco Fernández, Achim M. Loske. Phys Life Rev 2014; 11:210-1. [PMID: 24698658 DOI: 10.1016/j.plrev.2014.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Fausto Arellano-Carbajal
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla, Querétaro, Qro., México C.P. 76230, Mexico
| |
Collapse
|
41
|
Hernández AC, Angeles JÁ, Campos-Guillén J. One way, but diverse methods for fungi and yeast transformation: Comment on "Physical methods for genetic transformation of fungi and yeast" by Rivera et al. Phys Life Rev 2014; 11:204-5. [PMID: 24629729 DOI: 10.1016/j.plrev.2014.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Andrés Cruz Hernández
- Unidad de Microbiología Básica y Aplicada, Campus Aeropuerto, Universidad Autónoma de Querétaro. Carr. Chichimequillas s/n, Qro., México C.P. 76140, Mexico
| | - Jaime Ángeles Angeles
- Unidad de Microbiología Básica y Aplicada, Campus Aeropuerto, Universidad Autónoma de Querétaro. Carr. Chichimequillas s/n, Qro., México C.P. 76140, Mexico
| | - Juan Campos-Guillén
- Unidad de Microbiología Básica y Aplicada, Campus Aeropuerto, Universidad Autónoma de Querétaro. Carr. Chichimequillas s/n, Qro., México C.P. 76140, Mexico
| |
Collapse
|