1
|
Lathouwers E, Tassignon B, Maricot A, Radwan A, Naeyaert M, Raeymaekers H, Van Schuerbeek P, Sunaert S, De Mey J, De Pauw K. Human-Prosthetic Interaction (HumanIT): A study protocol for a clinical trial evaluating brain neuroplasticity and functional performance after lower limb loss. PLoS One 2024; 19:e0299869. [PMID: 38512879 PMCID: PMC10956762 DOI: 10.1371/journal.pone.0299869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Lower limb amputation contributes to structural and functional brain alterations, adversely affecting gait, balance, and overall quality of life. Therefore, selecting an appropriate prosthetic ankle is critical in enhancing the well-being of these individuals. Despite the availability of various prostheses, their impact on brain neuroplasticity remains poorly understood. OBJECTIVES The primary objective is to examine differences in the degree of brain neuroplasticity using magnetic resonance imaging (MRI) between individuals wearing a new passive ankle prosthesis with an articulated ankle joint and a standard passive prosthesis, and to examine changes in brain neuroplasticity within these two prosthetic groups. The second objective is to investigate the influence of prosthetic type on walking performance and quality of life. The final objective is to determine whether the type of prosthesis induces differences in the walking movement pattern. METHODS Participants with a unilateral transtibial amputation will follow a 24-week protocol. Prior to rehabilitation, baseline MRI scans will be performed, followed by allocation to the intervention arms and commencement of rehabilitation. After 12 weeks, baseline functional performance tests and a quality of life questionnaire will be administered. At the end of the 24-week period, participants will undergo the same MRI scans, functional performance tests and questionnaire to evaluate any changes. A control group of able-bodied individuals will be included for comparative analysis. CONCLUSION This study aims to unravel the differences in brain neuroplasticity and prosthesis type in patients with a unilateral transtibial amputation and provide insights into the therapeutic benefits of prosthetic devices. The findings could validate the therapeutic benefits of more advanced lower limb prostheses, potentially leading to a societal impact ultimately improving the quality of life for individuals with lower limb amputation. TRIAL REGISTRATION NCT05818410 (Clinicaltrials.gov).
Collapse
Affiliation(s)
- Elke Lathouwers
- Human Physiology and Sports Physiotherapy research group, Vrije Universiteit Brussel, Brussels, Belgium
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Tassignon
- Human Physiology and Sports Physiotherapy research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alexandre Maricot
- Human Physiology and Sports Physiotherapy research group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmed Radwan
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium
| | - Maarten Naeyaert
- Department of Radiology and Magnetic Resonance, UZ Brussel, Jette, Belgium
| | - Hubert Raeymaekers
- Department of Radiology and Magnetic Resonance, UZ Brussel, Jette, Belgium
| | | | - Stefan Sunaert
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium
- UZ Leuven, Department of Radiology, Leuven, Belgium
| | - Johan De Mey
- Department of Radiology and Magnetic Resonance, UZ Brussel, Jette, Belgium
| | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy research group, Vrije Universiteit Brussel, Brussels, Belgium
- BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
- Strategic Research Program ‘Exercise and the Brain in Health & Disease: The Added Value of Human-Centered Robotics’, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Wong CK, Youdan GA, Chihuri ST. Beyond exercise. Can application of manual therapy before exercise benefit a low functioning person with limb loss? A case study. J Man Manip Ther 2023; 31:383-389. [PMID: 36942674 PMCID: PMC10566409 DOI: 10.1080/10669817.2023.2192650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Most people with lower-limb loss (PLL) have musculoskeletal conditions and range-of-motion and muscle performance impairments. Such impairments limit potential for functional movement but can be reduced with manual therapy. Manual therapy, however, is rarely used for PLL. This case demonstrated how integrating manual therapy, exercise, and functional training led to lasting benefits for one low functioning PLL. CASE DESCRIPTION A 54-year-old woman more than 1 year after transtibial amputation due to peripheral artery disease presented with multiple comorbidities and yellow flags. Her function remained limited to the Medicare K-1 household walking level with slow gait speed <0.25 m/s. Treatment included four weekly sessions each beginning with manual therapy, followed by exercise and functional training. OUTCOMES After 1 month, performance-based strength, balance, walking speed, and physical activity increased. She advanced to the K-2 limited community walking level and maintained her functional level without further treatment after 3 months. DISCUSSION Improvements maintained without treatment expanded upon research that lacked follow-up and excluded K-1 level walkers. Marked improvement after only four sessions was noteworthy since exercise protocols require ≥4 sessions. CONCLUSION Manual therapy followed by exercise and functional training may optimize movement potential and contribute to improving strength, balance, gait, and physical activity among PLL.
Collapse
Affiliation(s)
- Christopher K. Wong
- Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Gregory A. Youdan
- Biobehavioral Sciences, Teachers College Columbia University, Bronx, NY, USA
| | - Stanford T. Chihuri
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
3
|
Tang YW, Murai A, Hobara H. Mediation of the mediolateral ground reaction force profile to maintain straight running among unilateral transfemoral amputees. Sci Rep 2023; 13:7823. [PMID: 37188732 DOI: 10.1038/s41598-023-34288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
The mediolateral ground reaction force (M-L GRF) profile that realizes a symmetrical mediolateral ground reaction impulse (M-L GRI) between both limbs is essential for maintaining a straight movement path. We aimed to examine the M-L GRF production across different running speeds in unilateral transfemoral amputees (TFA) to identify strategies for maintaining straight running. The average medial and lateral GRF, contact time (tc), M-L GRI, step width, and center of pressure angle (COPANG) were analyzed. Nine TFAs performed running trials at 100% speed on an instrumented treadmill. Trials were set at 30-80% speed with an increment of 10%. Seven steps from the unaffected and affected limbs were analyzed. Overall, the unaffected limbs exhibited a higher average medial GRF than the affected limbs. The M-L GRI were similar between both limbs at all speeds, implying that the participants were able to maintain a straight running path. The affected limb exhibited a longer tc and a lower M-L GRF profile than the unaffected limb. The results showed that unilateral TFAs adopted limb-specific strategies to maintain a straight running path, and that these limb-specific strategies were consistent across different running speeds.
Collapse
Affiliation(s)
- Ying Wai Tang
- Department of Human and Engineered Environmental Study, University of Tokyo, Kashiwa, Chiba, 277-0882, Japan.
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, 277-0882, Japan.
| | - Akihiko Murai
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, 277-0882, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Hiroaki Hobara
- Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, 125-8585, Japan
| |
Collapse
|
4
|
Cimolato A, Ciotti F, Kljajić J, Valle G, Raspopovic S. Symbiotic electroneural and musculoskeletal framework to encode proprioception via neurostimulation: ProprioStim. iScience 2023; 26:106248. [PMID: 36923003 PMCID: PMC10009292 DOI: 10.1016/j.isci.2023.106248] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Peripheral nerve stimulation in amputees achieved the restoration of touch, but not proprioception, which is critical in locomotion. A plausible reason is the lack of means to artificially replicate the complex activity of proprioceptors. To uncover this, we coupled neuromuscular models from ten subjects and nerve histologies from two implanted amputees to develop ProprioStim: a framework to encode proprioception by electrical evoking neural activity in close agreement with natural proprioceptive activity. We demonstrated its feasibility through non-invasive stimulation on seven healthy subjects comparing it with standard linear charge encoding. Results showed that ProprioStim multichannel stimulation was felt more natural, and hold promises for increasing accuracy in knee angle tracking, especially in future implantable solutions. Additionally, we quantified the importance of realistic 3D-nerve models against extruded models previously adopted for further design and validation of novel neurostimulation encoding strategies. ProprioStim provides clear guidelines for the development of neurostimulation policies restoring natural proprioception.
Collapse
Affiliation(s)
- Andrea Cimolato
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
- Rehab Technologies Lab, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
- Neuroengineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Federico Ciotti
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Jelena Kljajić
- Institute Mihajlo Pupin, Belgrade, 11060, Serbia
- School of Electrical Engineering, University of Belgrade, Belgrade, 11120, Serbia
| | - Giacomo Valle
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Stanisa Raspopovic
- Neuroengineering Lab, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
5
|
Finco MG, Sumien N, Moudy SC. Clinical evaluation of fall risk in older adults who use lower-limb prostheses: A scoping review. J Am Geriatr Soc 2023; 71:959-967. [PMID: 36648090 PMCID: PMC10023358 DOI: 10.1111/jgs.18223] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND No reviews or evidence-based clinical protocols exist to evaluate fall risk in older adults who use lower-limb prostheses, despite falls being prevalent and costly in this population. This scoping review sought to determine assessments, defined as clinical outcome measures and gait parameters, associated with fall risk in this population to determine if a systematic review is warranted and help inform an evidence-based clinical protocol. METHODS Google Scholar, PubMed, and Scopus were searched on April 19th, 2022 to include peer-reviewed original research. Included articles reported relationships between falls and clinical outcome measures or gait parameters in older adults who use transtibial or transfemoral prostheses. Clinical outcome measures included self-reported questionnaires and functional mobility tests. Gait parameters included spatiotemporal, kinematic, and kinetic data during walking and stair negotiation. RESULTS Nineteen articles were included. Clinical outcome measure scores, gait parameter data, and cutoff scores by fall status (nonfallers, single fallers, recurrent fallers) were summarized. Six articles determined clinical outcome measures that had statistically significant associations with falls, and two articles determined gait parameters that had statistically significant associations with falls. CONCLUSIONS The majority of articles found no clinical outcome measure or gait parameter alone was effective at identifying fall risks in this population. Future research should evaluate a combination of assessments and collect prospective fall data to move towards establishing an evidence-based protocol to evaluate fall risk in older adults using lower-limb prostheses.
Collapse
Affiliation(s)
- M G Finco
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Sarah C Moudy
- Department of Family and Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
6
|
Lathouwers E, Díaz MA, Maricot A, Tassignon B, Cherelle C, Cherelle P, Meeusen R, De Pauw K. Therapeutic benefits of lower limb prostheses: a systematic review. J Neuroeng Rehabil 2023; 20:4. [PMID: 36639655 PMCID: PMC9840272 DOI: 10.1186/s12984-023-01128-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Enhancing the quality of life of people with a lower limb amputation is critical in prosthetic development and rehabilitation. Yet, no overview is available concerning the impact of passive, quasi-passive and active ankle-foot prostheses on quality of life. OBJECTIVE To systematically review the therapeutic benefits of performing daily activities with passive, quasi-passive and active ankle-foot prostheses in people with a lower limb amputation. METHODS We searched the Pubmed, Web of Science, Scopus and Pedro databases, and backward citations until November 3, 2021. Only English-written randomised controlled trials, cross-sectional, cross-over and cohort studies were included when the population comprised individuals with a unilateral transfemoral or transtibial amputation, wearing passive, quasi-passive or active ankle-foot prostheses. The intervention and outcome measures had to include any aspect of quality of life assessed while performing daily activities. We synthesised the participants' characteristics, type of prosthesis, intervention, outcome and main results, and conducted risk of bias assessment using the Cochrane risk of bias tool. This study is registered on PROSPERO, number CRD42021290189. RESULTS We identified 4281 records and included 34 studies in total. Results indicate that quasi-passive and active prostheses are favoured over passive prostheses based on biomechanical, physiological, performance and subjective measures in the short-term. All studies had a moderate or high risk of bias. CONCLUSION Compared to passive ankle-foot prostheses, quasi-passive and active prostheses significantly enhance the quality of life. Future research should investigate the long-term therapeutic benefits of prosthetics devices.
Collapse
Affiliation(s)
- Elke Lathouwers
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - María Alejandra Díaz
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Alexandre Maricot
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bruno Tassignon
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | | | | | - Romain Meeusen
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium. .,Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium.
| |
Collapse
|
7
|
Mellema M, Gjøvaag T. Reported Outcome Measures in Studies of Real-World Ambulation in People with a Lower Limb Amputation: A Scoping Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:2243. [PMID: 35336412 PMCID: PMC8955603 DOI: 10.3390/s22062243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND The rapidly increasing use of wearable technology to monitor free-living ambulatory behavior demands to address to what extent the chosen outcome measures are representative for real-world situations. This scoping review aims to provide an overview of the purpose of use of wearable activity monitors in people with a Lower Limb Amputation (LLA) in the real world, to identify the reported outcome measures, and to evaluate to what extent the reported outcome measures capture essential information from real-world ambulation of people with LLA. METHODS The literature search included a search in three databases (MEDLINE, CINAHL, and EMBASE) for articles published between January 1999 and January 2022, and a hand-search. RESULTS AND CONCLUSIONS 98 articles met the inclusion criteria. According to the included studies' main objective, the articles were classified into observational (n = 46), interventional (n = 34), algorithm/method development (n = 12), and validity/feasibility studies (n = 6). Reported outcome measures were grouped into eight categories: step count (reported in 73% of the articles), intensity of activity/fitness (31%), type of activity/body posture (27%), commercial scores (15%), prosthetic use and fit (11%), gait quality (7%), GPS (5%), and accuracy (4%). We argue that researchers should be more careful with choosing reliable outcome measures, in particular, regarding the frequently used category step count. However, the contemporary technology is limited in providing a comprehensive picture of real-world ambulation. The novel knowledge from this review should encourage researchers and developers to engage in debating and defining the framework of ecological validity in rehabilitation sciences, and how this framework can be utilized in the development of wearable technologies and future studies of real-world ambulation in people with LLA.
Collapse
Affiliation(s)
- Mirjam Mellema
- Department of Mechanical, Electronic and Chemical Engineering, Faculty of Technology, Art and Design, Oslo Metropolitan University, P.O. Box 4, St. Olavs Plass, 0130 Oslo, Norway
- Department of Occupational Therapy, Prosthetics and Orthotics, Faculty of Health Sciences, Oslo Metropolitan University, P.O. Box 4, St. Olavs Plass, 0130 Oslo, Norway;
| | - Terje Gjøvaag
- Department of Occupational Therapy, Prosthetics and Orthotics, Faculty of Health Sciences, Oslo Metropolitan University, P.O. Box 4, St. Olavs Plass, 0130 Oslo, Norway;
| |
Collapse
|