1
|
Didcote L, Vitoratou S, Al-Chalabi A, Goldstein LH. Comparison of in-person vs. remote administration of cognitive screening tools for people with ALS. Neurol Sci 2024; 45:5309-5317. [PMID: 38951432 PMCID: PMC11470852 DOI: 10.1007/s10072-024-07661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE This study investigated whether cognitive screening tools used for people with amyotrophic lateral sclerosis (pwALS) are affected by the screen being administered face-to-face or remotely online. It also investigated whether demographic variables predicted total cognitive screen scores. METHODS The cognitive component of the Edinburgh Cognitive and Behavioural ALS Screen (ECASc), the cognitive component of the ALS Cognitive Behavioural Screen (ALS-CBSc), and the Mini Addenbrooke's Cognitive Examination (Mini-ACE) were administered to 41 pwALS and 41 controls face-to-face. Versions of the cognitive screens designed to be administered remotely were administered to 57 pwALS and 44 controls via videoconferencing methods. Backwards stepwise linear regressions were conducted to assess whether total scores on the ECASc, ALS-CBSc, and Mini-ACE scores were predicted by administration mode (face-to-face or remote) or demographic variables. RESULTS Mode of administration significantly affected scores on the ECASc and ALS-CBSc; remote administration was associated with better total scores. Administration mode did not significantly affect Mini-ACE scores. All cognitive screens were significantly affected by IQ scores; higher IQ scores predicted better screening tool scores. Only ECASc scores were significantly affected by age, with older age predicting poorer scores. Being female was associated with better Mini-ACE scores; sex did not predict ECASc and ALS-CBSc scores. CONCLUSIONS Our results suggest that videoconferencing versions of the ECASc and ALS-CBSc may function differently to the original, face-to-face versions. There are advantages to using remote versions of cognitive screening tools but clinicians and researchers who use them should consider that they may not yield equivalent scores.
Collapse
Affiliation(s)
- Lyndsay Didcote
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Silia Vitoratou
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Department of Neurology, King's College Hospital NHS Foundation Trust, London, UK
| | - Laura H Goldstein
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
2
|
Fernandes F, Barbalho I, Bispo Júnior A, Alves L, Nagem D, Lins H, Arrais Júnior E, Coutinho KD, Morais AHF, Santos JPQ, Machado GM, Henriques J, Teixeira C, Dourado Júnior MET, Lindquist ARR, Valentim RAM. Digital Alternative Communication for Individuals with Amyotrophic Lateral Sclerosis: What We Have. J Clin Med 2023; 12:5235. [PMID: 37629277 PMCID: PMC10455505 DOI: 10.3390/jcm12165235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Amyotrophic Lateral Sclerosis is a disease that compromises the motor system and the functional abilities of the person in an irreversible way, causing the progressive loss of the ability to communicate. Tools based on Augmentative and Alternative Communication are essential for promoting autonomy and improving communication, life quality, and survival. This Systematic Literature Review aimed to provide evidence on eye-image-based Human-Computer Interaction approaches for the Augmentative and Alternative Communication of people with Amyotrophic Lateral Sclerosis. The Systematic Literature Review was conducted and guided following a protocol consisting of search questions, inclusion and exclusion criteria, and quality assessment, to select primary studies published between 2010 and 2021 in six repositories: Science Direct, Web of Science, Springer, IEEE Xplore, ACM Digital Library, and PubMed. After the screening, 25 primary studies were evaluated. These studies showcased four low-cost, non-invasive Human-Computer Interaction strategies employed for Augmentative and Alternative Communication in people with Amyotrophic Lateral Sclerosis. The strategies included Eye-Gaze, which featured in 36% of the studies; Eye-Blink and Eye-Tracking, each accounting for 28% of the approaches; and the Hybrid strategy, employed in 8% of the studies. For these approaches, several computational techniques were identified. For a better understanding, a workflow containing the development phases and the respective methods used by each strategy was generated. The results indicate the possibility and feasibility of developing Human-Computer Interaction resources based on eye images for Augmentative and Alternative Communication in a control group. The absence of experimental testing in people with Amyotrophic Lateral Sclerosis reiterates the challenges related to the scalability, efficiency, and usability of these technologies for people with the disease. Although challenges still exist, the findings represent important advances in the fields of health sciences and technology, promoting a promising future with possibilities for better life quality.
Collapse
Affiliation(s)
- Felipe Fernandes
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Ingridy Barbalho
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Arnaldo Bispo Júnior
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Luca Alves
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Danilo Nagem
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Hertz Lins
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Ernano Arrais Júnior
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Karilany D. Coutinho
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Antônio H. F. Morais
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Natal 59015-000, Brazil; (A.H.F.M.); (J.P.Q.S.)
| | - João Paulo Q. Santos
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Natal 59015-000, Brazil; (A.H.F.M.); (J.P.Q.S.)
| | | | - Jorge Henriques
- Department of Informatics Engineering, Center for Informatics and Systems of the University of Coimbra, Universidade de Coimbra, 3030-788 Coimbra, Portugal; (J.H.); (C.T.)
| | - César Teixeira
- Department of Informatics Engineering, Center for Informatics and Systems of the University of Coimbra, Universidade de Coimbra, 3030-788 Coimbra, Portugal; (J.H.); (C.T.)
| | - Mário E. T. Dourado Júnior
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
- Department of Integrated Medicine, Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil
| | - Ana R. R. Lindquist
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| | - Ricardo A. M. Valentim
- Laboratory of Technological Innovation in Health (LAIS), Federal University of Rio Grande do Norte (UFRN), Natal 59010-090, Brazil; (I.B.); (A.B.J.); (L.A.); (D.N.); (H.L.); (E.A.J.); (K.D.C.); (M.E.T.D.J.); (A.R.R.L.); (R.A.M.V.)
| |
Collapse
|
3
|
Palumbo A, Ielpo N, Calabrese B, Corchiola D, Garropoli R, Gramigna V, Perri G. SIMpLE: A Mobile Cloud-Based System for Health Monitoring of People with ALS. SENSORS 2021; 21:s21217239. [PMID: 34770548 PMCID: PMC8587347 DOI: 10.3390/s21217239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 01/05/2023]
Abstract
Adopting telemonitoring services during the pandemic for people affected by chronic disease is fundamental to ensure access to health care services avoiding the risk of COVID-19 infection. Among chronic diseases, Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is a progressive neurodegenerative disease of adulthood, caused by the loss of spinal, bulbar and cortical motor neurons, which leads to paralysis of the voluntary muscles and, also, involves respiratory ones. Therefore, remote monitoring and teleconsulting are essential services for ALS patients with limited mobility, as the disease progresses, and for those living far from ALS centres and hospitals. In addition, the COVID 19 pandemic has increased the need to remotely provide the best care to patients, avoiding infection during ALS centre visits. The paper illustrates an innovative, secure medical monitoring and teleconsultation mobile cloud-based system for disabled people, such as those with ALS (Amyotrophic Lateral Sclerosis). The design aims to remotely monitor biosignals, such as ECG (electrocardiographic) and EMG (electromyographic) signals of ALS patients in order to prevent complications related to the pathology.
Collapse
Affiliation(s)
- Arrigo Palumbo
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (A.P.); (N.I.)
| | - Nicola Ielpo
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (A.P.); (N.I.)
| | - Barbara Calabrese
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (A.P.); (N.I.)
- Correspondence:
| | | | - Remo Garropoli
- Garropoli Computer Science Consulting, 87100 Cosenza, Italy;
| | - Vera Gramigna
- Neuroscience Research Center, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Giovanni Perri
- Radiological Center Perri-Bilotti, 87100 Cosenza, Italy;
| |
Collapse
|
4
|
Chiò A, Canosa A, Calvo A, Moglia C, Cicolin A, Mora G. Developments in the assessment of non-motor disease progression in amyotrophic lateral sclerosis. Expert Rev Neurother 2021; 21:1419-1440. [PMID: 34554894 DOI: 10.1080/14737175.2021.1984883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The burden of non-motor symptoms is a major determinant of quality of life and outcome in amyotrophic lateral sclerosis (ALS) and has profound negative effect also on caregivers. AREAS COVERED Non-motor symptoms in ALS include cognitive impairment, neurobehavioral symptoms, depression and anxiety, suicidal ideation, pain, disordered sleep, fatigue, weight loss and reduced appetite, and autonomic dysfunctions. This review summarizes the measures used for the assessment of non-motor symptoms and their properties and recaps the frequency and progression of these symptoms along the course of ALS. EXPERT OPINION Non-motor symptoms in ALS represent a major component of the disease and span over several domains. These symptoms require a high level of medical attention and should be checked at each visit using ad hoc questionnaires and proactively treated. Several instruments assessing non-motor symptoms have been used in ALS. Specific screening questionnaires for non-motor symptoms can be used for monitoring patients during telehealth visits and for remote surveillance through sensors and apps installed on smartphones. Novel trials for non-motor symptoms treatment specifically designed for ALS are necessary to increase and refine the therapeutic armamentarium. Finally, scales assessing the most frequent and burdensome non-motor symptoms should be included in clinical trials.
Collapse
Affiliation(s)
- Adriano Chiò
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy.,Neurology I, Azienda Ospedaliera Città Della Salute E Della Scienza of Turin, Turin, Italy
| | - Antonio Canosa
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy.,Neurology I, Azienda Ospedaliera Città Della Salute E Della Scienza of Turin, Turin, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy.,Neurology I, Azienda Ospedaliera Città Della Salute E Della Scienza of Turin, Turin, Italy
| | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy.,Neurology I, Azienda Ospedaliera Città Della Salute E Della Scienza of Turin, Turin, Italy
| | - Alessandro Cicolin
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy.,Sleep Medicine Center, Azienda Ospedaliera Città Della Salute E Della Scienza of Turin, Turin, Italy
| | - Gabriele Mora
- Neurorehabilitation Department, Ics Maugeri Irccs, Institute of Milan, Milan, Italy
| |
Collapse
|