1
|
Wang W, Wei CJ, Cui XW, Li YH, Gu YH, Gu B, Li QF, Wang ZC. Impacts of NF1 Gene Mutations and Genetic Modifiers in Neurofibromatosis Type 1. Front Neurol 2021; 12:704639. [PMID: 34566848 PMCID: PMC8455870 DOI: 10.3389/fneur.2021.704639] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a tumor predisposition genetic disorder that directly affects more than 1 in 3,000 individuals worldwide. It results from mutations of the NF1 gene and shows almost complete penetrance. NF1 patients show high phenotypic variabilities, including cafe-au-lait macules, freckling, or other neoplastic or non-neoplastic features. Understanding the underlying mechanisms of the diversities of clinical symptoms might contribute to the development of personalized healthcare for NF1 patients. Currently, studies have shown that the different types of mutations in the NF1 gene might correlate with this phenomenon. In addition, genetic modifiers are responsible for the different clinical features. In this review, we summarize different genetic mutations of the NF1 gene and related genetic modifiers. More importantly, we focus on the genotype–phenotype correlation. This review suggests a novel aspect to explain the underlying mechanisms of phenotypic heterogeneity of NF1 and provides suggestions for possible novel therapeutic targets to prevent or delay the onset and development of different manifestations of NF1.
Collapse
Affiliation(s)
- Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Jiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Wei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Hua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Kukutla P, Ahmed SG, DuBreuil DM, Abdelnabi A, Cetinbas M, Fulci G, Aldikacti B, Stemmer-Rachamimov A, Plotkin SR, Wainger B, Sadreyev RI, Brenner GJ. Transcriptomic signature of painful human neurofibromatosis type 2 schwannomas. Ann Clin Transl Neurol 2021; 8:1508-1514. [PMID: 34053190 PMCID: PMC8283170 DOI: 10.1002/acn3.51386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 12/26/2022] Open
Abstract
Schwannomas are benign neoplasms that can cause gain‐ and loss‐of‐function neurological phenotypes, including severe, intractable pain. To investigate the molecular mechanisms underlying schwannoma‐associated pain we compared the RNA sequencing profile of painful and non‐painful schwannomas from NF2 patients. Distinct segregation of painful and non‐painful tumors by gene expression patterns was observed. Differential expression analysis showed the upregulation of fibroblast growth factor 7 (FGF7) in painful schwannomas. Behavioral support for this finding was observed using a xenograft human NF2‐schwannoma model in nude mice. In this model, over‐expression of FGF7 in intra‐sciatically implanted NF2 tumor cells generated pain behavior compared with controls.
Collapse
Affiliation(s)
- Phanidhar Kukutla
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, Massachusetts, 02114, USA
| | - Sherif G Ahmed
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, Massachusetts, 02114, USA
| | - Daniel M DuBreuil
- Department of Neurology, MGH, HMS, Boston, Massachusetts, USA.,Broad Institute of MGH and Harvard, Boston, Massachusetts, USA
| | - Ahmed Abdelnabi
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, Massachusetts, 02114, USA
| | - Murat Cetinbas
- Department of Molecular Biology, MGH, Boston, Massachusetts, 02114, USA.,Department of Pathology, MGH and HMS, Boston, Massachusetts, 02114, USA
| | - Giulia Fulci
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, Massachusetts, 02114, USA.,Cancer Center, MGH, Boston, Massachusetts, 02114, USA
| | - Berent Aldikacti
- Center for Engineering in Medicine, MGH, Boston, Massachusetts, 02114, USA
| | - Anat Stemmer-Rachamimov
- Department of Molecular Biology, MGH, Boston, Massachusetts, 02114, USA.,Department of Pathology, MGH and HMS, Boston, Massachusetts, 02114, USA
| | - Scott R Plotkin
- Department of Neurology, MGH, HMS, Boston, Massachusetts, USA.,Cancer Center, MGH, Boston, Massachusetts, 02114, USA
| | - Brian Wainger
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, Massachusetts, 02114, USA.,Department of Neurology, MGH, HMS, Boston, Massachusetts, USA.,Broad Institute of MGH and Harvard, Boston, Massachusetts, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, MGH, Boston, Massachusetts, 02114, USA.,Department of Pathology, MGH and HMS, Boston, Massachusetts, 02114, USA
| | - Gary J Brenner
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, Massachusetts, 02114, USA
| |
Collapse
|
3
|
Schein CH. Repurposing approved drugs on the pathway to novel therapies. Med Res Rev 2020; 40:586-605. [PMID: 31432544 PMCID: PMC7018532 DOI: 10.1002/med.21627] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022]
Abstract
The time and cost of developing new drugs have led many groups to limit their search for therapeutics to compounds that have previously been approved for human use. Many "repurposed" drugs, such as derivatives of thalidomide, antibiotics, and antivirals have had clinical success in treatment areas well beyond their original approved use. These include applications in treating antibiotic-resistant organisms, viruses, cancers and to prevent burn scarring. The major theoretical justification for reusing approved drugs is that they have known modes of action and controllable side effects. Coadministering antibiotics with inhibitors of bacterial toxins or enzymes that mediate multidrug resistance can greatly enhance their activity. Drugs that control host cell pathways, including inflammation, tumor necrosis factor, interferons, and autophagy, can reduce the "cytokine storm" response to injury, control infection, and aid in cancer therapy. An active compound, even if previously approved for human use, will be a poor clinical candidate if it lacks specificity for the new target, has poor solubility or can cause serious side effects. Synergistic combinations can reduce the dosages of the individual components to lower reactivity. Preclinical analysis should take into account that severely ill patients with comorbidities will be more sensitive to side effects than healthy trial subjects. Once an active, approved drug has been identified, collaboration with medicinal chemists can aid in finding derivatives with better physicochemical properties, specificity, and efficacy, to provide novel therapies for cancers, emerging and rare diseases.
Collapse
Affiliation(s)
- Catherine H Schein
- Department of Biochemistry and Molecular Biology, Institute for Human Infection and Immunity (IHII), University of Texas Medical Branch at Galveston, Galveston, Texas
| |
Collapse
|
4
|
Alcantara KMM, Garcia RL. MicroRNA‑92a promotes cell proliferation, migration and survival by directly targeting the tumor suppressor gene NF2 in colorectal and lung cancer cells. Oncol Rep 2019; 41:2103-2116. [PMID: 30816526 PMCID: PMC6412542 DOI: 10.3892/or.2019.7020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/05/2019] [Indexed: 01/29/2023] Open
Abstract
Inactivation of the tumor suppressor protein Merlin leads to the development of benign nervous system tumors in neurofibromatosis type 2 (NF2). Documented causes of Merlin inactivation include deleterious mutations in the encoding neurofibromin 2 gene (NF2) and aberrant Merlin phosphorylation leading to proteasomal degradation. Rare somatic NF2 mutations have also been detected in common human malignancies not associated with NF2, including colorectal and lung cancer. Furthermore, tumors without NF2 mutations and with unaltered NF2 transcript levels, but with low Merlin expression, have been reported. The present study demonstrated that NF2 is also regulated by microRNAs (miRNAs) through direct interaction with evolutionarily conserved miRNA response elements (MREs) within its 3′-untranslated region (3′UTR). Dual-Luciferase assays in human colorectal carcinoma (HCT116) and lung adenocarcinoma (A549) cells revealed downregulation of NF2 by miR-92a-3p via its wild-type 3′UTR, but not NF2−3′UTR with mutated miR-92a-3p MRE. HCT116 cells overexpressing miR-92a-3p exhibited significant downregulation of endogenous NF2 mRNA and protein levels, which was rescued by co-transfection of a target protector oligonucleotide specific for the miR-92a-3p binding site within NF2−3′UTR. miR-92a-3p overexpression in HCT116 and A549 cells promoted migration, proliferation and resistance to apoptosis, as well as altered F-actin organization compared with controls. Knockdown of NF2 by siRNA phenocopied the oncogenic effects of miR-92a overexpression on HCT116 and A549 cells. Collectively, the findings of the present study provide functional proof of the unappreciated role of miRNAs in NF2 regulation and tumor progression, leading to enhanced oncogenicity.
Collapse
Affiliation(s)
- Krizelle Mae M Alcantara
- National Institute of Molecular Biology and Biotechnology, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Reynaldo L Garcia
- National Institute of Molecular Biology and Biotechnology, University of the Philippines, Diliman, Quezon City 1101, Philippines
| |
Collapse
|
6
|
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF1) is an autosomal dominantly inherited tumor predisposition syndrome with an incidence of one in 3000-4000 individuals with no currently effective therapies. The NF1 gene encodes neurofibromin, which functions as a negative regulator of RAS. NF1 is a chronic multisystem disorder affecting many different tissues. Due to cell-specific complexities of RAS signaling, therapeutic approaches for NF1 will likely have to focus on a particular tissue and manifestation of the disease. Areas covered: We discuss the multisystem nature of NF1 and the signaling pathways affected due to neurofibromin deficiency. We explore the cell-/tissue-specific molecular and cellular consequences of aberrant RAS signaling in NF1 and speculate on their potential as therapeutic targets for the disease. We discuss recent genomic, transcriptomic, and proteomic studies combined with molecular, cellular, and biochemical analyses which have identified several targets for specific NF1 manifestations. We also consider the possibility of patient-specific gene therapy approaches for NF1. Expert opinion: The emergence of NF1 genotype-phenotype correlations, characterization of cell-specific signaling pathways affected in NF1, identification of novel biomarkers, and the development of sophisticated animal models accurately reflecting human pathology will continue to provide opportunities to develop therapeutic approaches to combat this multisystem disorder.
Collapse
Affiliation(s)
- James A Walker
- a Center for Genomic Medicine , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Meena Upadhyaya
- b Division of Cancer and Genetics , Cardiff University , Cardiff , UK
| |
Collapse
|
7
|
Sheikh TN, Patwardhan PP, Cremers S, Schwartz GK. Targeted inhibition of glutaminase as a potential new approach for the treatment of NF1 associated soft tissue malignancies. Oncotarget 2017; 8:94054-94068. [PMID: 29212209 PMCID: PMC5706855 DOI: 10.18632/oncotarget.21573] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/16/2017] [Indexed: 01/23/2023] Open
Abstract
Many cancer cells rely on glutamine as the source of carbon molecules to feed the biosynthetic pathways and are often addicted to glutaminolysis. Inhibitors of glutaminase activity have gained attention in the last few years due to their anti-proliferative effect and ability to induce apoptosis in some cancers. Although it is a promising therapeutic approach, its efficacy or the role played by glutamine in modulating cell proliferation in NF1 associated tumors has never been studied. We report for the first time, a strong correlation between the NF1 status of tumor cells and increased sensitivity to glutamine deprivation and glutaminase inhibition. Soft-tissue cell lines null for NF1 were highly dependent on glutamine for proliferation and showed decreased mTORC1 and Ras activity in response to glutaminase inhibition. Re-addition of glutamine or intermediary metabolite such as glutamate to the media restored mTORC1 and Ras activity. SiRNA mediated NF1 knockdown in wild-type NF1 cell line shows increased sensitivity to glutaminase inhibition. Conversely, NF1 overexpression in NF1 null cell lines results in reduced sensitivity to glutaminase inhibition, and restores mTORC1 signaling and Ras activity. These findings provide new insights into the role played by glutamine metabolism in NF1 associated tumors and strongly warrant further investigation as a potential therapy in the NF1 disease setting.
Collapse
Affiliation(s)
- Tahir N Sheikh
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | | | - Serge Cremers
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gary K Schwartz
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA.,Department of Hematology/Oncology, Columbia University College of Medicine, New York, NY, USA
| |
Collapse
|