1
|
Mackowiak ALC, Piccini D, van Heeswijk RB, Hullin R, Gräni C, Bastiaansen JAM. Fat-free noncontrast whole-heart cardiovascular magnetic resonance imaging with fast and power-optimized off-resonant water-excitation pulses. J Cardiovasc Magn Reson 2024; 26:101096. [PMID: 39278414 PMCID: PMC11616052 DOI: 10.1016/j.jocmr.2024.101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance imaging (CMR) faces challenges due to the interference of bright fat signals in visualizing structures, such as coronary arteries. Effective fat suppression is crucial, especially when using whole-heart CMR techniques. Conventional methods often fall short due to rapid fat signal recovery, leading to residual fat content hindering visualization. Water-selective off-resonant radiofrequency (RF) pulses have been proposed but come with tradeoffs between pulse duration, which increases scan time, and increased RF energy deposit, which limits their applicability due to specific absorption rate (SAR) constraints. The study introduces a lipid-insensitive binomial off-resonant (LIBOR) RF pulse, which addresses concerns about SAR and scan time, and aims to provide a comprehensive quantitative comparison with published off-resonant RF pulses for CMR at 3T. METHODS A short (1 ms) LIBOR pulse, with reduced RF power requirements, was developed and implemented in a free-breathing respiratory-self-navigated three-dimensional radial whole-heart CMR sequence at 3T. A binomial off-resonant rectangular (BORR) pulse with matched duration, as well as previously published lipid-insensitive binomial off-resonant excitation (LIBRE) pulses (1 and 2.2 ms), were implemented and optimized for fat suppression in numerical simulations and validated in volunteers (n = 3). Whole-heart CMR was performed in volunteers (n = 10) with all four pulses. The signal-to-noise ratio (SNR) of ventricular blood, skeletal muscle, myocardium, and subcutaneous fat and the coronary vessel detection rates and sharpness were compared. RESULTS Experimental results validated numerical findings and near-homogeneous fat suppression was achieved with all four pulses. Comparing the short RF pulses (1 ms), LIBOR reduced the RF power nearly two-fold compared with LIBRE, and three-fold compared with BORR, and LIBOR significantly decreased overall fat SNR from cardiac scans, compared to LIBRE and BORR. The reduction in RF pulse duration (from 2.2 to 1 ms) shortened the whole-heart acquisition from 8.5 to 7 min. No significant differences in coronary arteries detection and sharpness were found when comparing all four pulses. CONCLUSION LIBOR pulses enabled whole-heart CMR under 7 min at 3T, with large volume fat signal suppression, while reducing RF power compared with LIBRE and BORR pulses. LIBOR is an excellent candidate to address SAR problems encountered in CMR sequences where fat suppression remains challenging and short RF pulses are required.
Collapse
Affiliation(s)
- Adèle L C Mackowiak
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Davide Piccini
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Advanced Clinical Imaging Technology (ACIT), Siemens Healthcare AG, Lausanne, Switzerland
| | - Ruud B van Heeswijk
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Roger Hullin
- Department of Cardiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jessica A M Bastiaansen
- Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| |
Collapse
|
2
|
Giacchi G, Milani B, Franceschiello B. On the Determination of Lagrange Multipliers for a Weighted LASSO Problem Using Geometric and Convex Analysis Techniques. APPLIED MATHEMATICS AND OPTIMIZATION 2024; 89:31. [PMID: 38261892 PMCID: PMC10794441 DOI: 10.1007/s00245-023-10096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
Compressed Sensing (CS) encompasses a broad array of theoretical and applied techniques for recovering signals, given partial knowledge of their coefficients, cf. Candés (C. R. Acad. Sci. Paris, Ser. I 346, 589-592 (2008)), Candés et al. (IEEE Trans. Inf. Theo (2006)), Donoho (IEEE Trans. Inf. Theo. 52(4), (2006)), Donoho et al. (IEEE Trans. Inf. Theo. 52(1), (2006)). Its applications span various fields, including mathematics, physics, engineering, and several medical sciences, cf. Adcock and Hansen (Compressive Imaging: Structure, Sampling, Learning, p. 2021), Berk et al. (2019 13th International conference on Sampling Theory and Applications (SampTA) pp. 1-5. IEEE (2019)), Brady et al. (Opt. Express 17(15), 13040-13049 (2009)), Chan (Terahertz imaging with compressive sensing. Rice University, USA (2010)), Correa et al. (2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 7789-7793 (2014, May) IEEE), Gao et al. (Nature 516(7529), 74-77 (2014)), Liu and Kang (Opt. Express 18(21), 22010-22019 (2010)), McEwen and Wiaux (Mon. Notices Royal Astron. Soc. 413(2), 1318-1332 (2011)), Marim et al. (Opt. Lett. 35(6), 871-873 (2010)), Yu and Wang (Phys. Med. Biol. 54(9), 2791 (2009)), Yu and Wang (Phys. Med. Biol. 54(9), 2791 (2009)). Motivated by our interest in the mathematics behind Magnetic Resonance Imaging (MRI) and CS, we employ convex analysis techniques to analytically determine equivalents of Lagrange multipliers for optimization problems with inequality constraints, specifically a weighted LASSO with voxel-wise weighting. We investigate this problem under assumptions on the fidelity term A x - b 2 2 , either concerning the sign of its gradient or orthogonality-like conditions of its matrix. To be more precise, we either require the sign of each coordinate of 2 ( A x - b ) T A to be fixed within a rectangular neighborhood of the origin, with the side lengths of the rectangle dependent on the constraints, or we assume A T A to be diagonal. The objective of this work is to explore the relationship between Lagrange multipliers and the constraints of a weighted variant of LASSO, specifically in the mentioned cases where this relationship can be computed explicitly. As they scale the regularization terms of the weighted LASSO, Lagrange multipliers serve as tuning parameters for the weighted LASSO, prompting the question of their potential effective use as tuning parameters in applications like MR image reconstruction and denoising. This work represents an initial step in this direction.
Collapse
Affiliation(s)
- Gianluca Giacchi
- Università di Bologna, Dipartimento di Matematica, Piazza di Porta San Donato 5, 40126 Bologna, Italy
- Institute of Systems Engineering, School of Engineering, HES-SO Valais-Wallis, Rue de l’Industrie 23, 1950 Sion, Switzerland
- Lausanne University Hospital and University of Lausanne, Lausanne, Department of Diagnostic and Interventional Radiology, Rue du Bugnon 46, Lausanne, 1011 Switzerland
- The Sense Innovation and Research Center, Avenue de Provence 82 1007, Lausanne and Ch. de l’Agasse 5, 1950 Sion, Switzerland
| | - Bastien Milani
- Lausanne University Hospital and University of Lausanne, Lausanne, Department of Diagnostic and Interventional Radiology, Rue du Bugnon 46, Lausanne, 1011 Switzerland
| | - Benedetta Franceschiello
- Institute of Systems Engineering, School of Engineering, HES-SO Valais-Wallis, Rue de l’Industrie 23, 1950 Sion, Switzerland
- The Sense Innovation and Research Center, Avenue de Provence 82 1007, Lausanne and Ch. de l’Agasse 5, 1950 Sion, Switzerland
| |
Collapse
|
3
|
Franceschiello B, Rumac S, Hilbert T, Nau M, Dziadosz M, Degano G, Roy CW, Gaglianese A, Petri G, Yerly J, Stuber M, Kober T, van Heeswijk RB, Murray MM, Fornari E. Hi-Fi fMRI: High-resolution, fast-sampled and sub-second whole-brain functional MRI at 3T in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.13.540663. [PMID: 37425913 PMCID: PMC10327135 DOI: 10.1101/2023.05.13.540663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is a methodological cornerstone of neuroscience. Most studies measure blood-oxygen-level-dependent (BOLD) signal using echo-planar imaging (EPI), Cartesian sampling, and image reconstruction with a one-to-one correspondence between the number of acquired volumes and reconstructed images. However, EPI schemes are subject to trade-offs between spatial and temporal resolutions. We overcome these limitations by measuring BOLD with a gradient recalled echo (GRE) with 3D radial-spiral phyllotaxis trajectory at a high sampling rate (28.24ms) on standard 3T field-strength. The framework enables the reconstruction of 3D signal time courses with whole-brain coverage at simultaneously higher spatial (1mm 3 ) and temporal (up to 250ms) resolutions, as compared to optimized EPI schemes. Additionally, artifacts are corrected before image reconstruction; the desired temporal resolution is chosen after scanning and without assumptions on the shape of the hemodynamic response. By showing activation in the calcarine sulcus of 20 participants performing an ON-OFF visual paradigm, we demonstrate the reliability of our method for cognitive neuroscience research.
Collapse
|
4
|
Frey M, Nau M, Doeller CF. Magnetic resonance-based eye tracking using deep neural networks. Nat Neurosci 2021; 24:1772-1779. [PMID: 34750593 PMCID: PMC10097595 DOI: 10.1038/s41593-021-00947-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 09/17/2021] [Indexed: 12/21/2022]
Abstract
Viewing behavior provides a window into many central aspects of human cognition and health, and it is an important variable of interest or confound in many functional magnetic resonance imaging (fMRI) studies. To make eye tracking freely and widely available for MRI research, we developed DeepMReye, a convolutional neural network (CNN) that decodes gaze position from the magnetic resonance signal of the eyeballs. It performs cameraless eye tracking at subimaging temporal resolution in held-out participants with little training data and across a broad range of scanning protocols. Critically, it works even in existing datasets and when the eyes are closed. Decoded eye movements explain network-wide brain activity also in regions not associated with oculomotor function. This work emphasizes the importance of eye tracking for the interpretation of fMRI results and provides an open source software solution that is widely applicable in research and clinical settings.
Collapse
Affiliation(s)
- Markus Frey
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway. .,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Matthias Nau
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway. .,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Institute of Psychology, Leipzig University, Leipzig, Germany
| |
Collapse
|
5
|
Bustin A. Editorial for "A Comparison of 3T and 7T MRI for the Clinical Evaluation of Uveal Melanoma". J Magn Reson Imaging 2021; 55:1516-1517. [PMID: 34605105 DOI: 10.1002/jmri.27941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Aurélien Bustin
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM U1045, Centre de Recherche Cardio-Thoracique de Bordeaux, Pessac, France.,Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Pessac, France.,Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Nguyen BN, Cleary JO, Glarin R, Kolbe SC, Moffat BA, Ordidge RJ, Bui BV, McKendrick AM. Ultra-High Field Magnetic Resonance Imaging of the Retrobulbar Optic Nerve, Subarachnoid Space, and Optic Nerve Sheath in Emmetropic and Myopic Eyes. Transl Vis Sci Technol 2021; 10:8. [PMID: 34003892 PMCID: PMC7873495 DOI: 10.1167/tvst.10.2.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose We aimed to image the optic nerve, subarachnoid space and optic nerve sheath in emmetropes and myopes ultra-high field (7-Tesla) magnetic resonance imaging (MRI). We targeted the retrobulbar distance of approximately 3 mm behind the eyeball, an area of clinical interest because of optic nerve sheath distensibility and pressure-related enlargement. Methods Eleven emmetropes (+0.75 to −0.50D, aged 20–41 years) and 10 myopes (−4.5 to −12D, aged 21–37 years) participated. Cross-sectional area of the optic nerve, subarachnoid space and optic nerve sheath at approximately 3 mm behind the eye were measured from two-dimensional T2-weighted coronal oblique MRI images obtained through the left optic nerve. Axial length of the left eye was measured from T2-weighted axial MRI images. In nine emmetropes and seven myopes, the optic nerve head was imaged with optical coherence tomography to compare retrobulbar and intraocular measures. Results Retrobulbar optic nerve, subarachnoid space and optic nerve sheath dimensions differed between myopes and emmetropes. Myopes tended to have smaller optic nerve and subarachnoid space. Longer MRI-derived axial length was associated with smaller optic nerve area (P = 0.03). Bruch's membrane opening area did not predict retrobulbar optic nerve area (P = 0.48). Conclusions This study demonstrates the feasibility of using 7-Tesla MRI to measure optic nerve, subarachnoid space, and optic nerve sheath dimensions behind the eye. In healthy adults, the retrobulbar optic nerve and subarachnoid space size are influenced by the degree of myopia. Translational Relevance ultra-high field MRI is a practical tool for assessing the morphometry of the optic nerve and surrounding anatomy behind the eye.
Collapse
Affiliation(s)
- Bao N Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jon O Cleary
- Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Rebecca Glarin
- Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Radiology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Scott C Kolbe
- Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, The University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Australia
| | - Bradford A Moffat
- Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Roger J Ordidge
- Melbourne Brain Centre Imaging Unit, Department of Medicine and Radiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison M McKendrick
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Niendorf T, Beenakker JWM, Langner S, Erb-Eigner K, Bach Cuadra M, Beller E, Millward JM, Niendorf TM, Stachs O. Ophthalmic Magnetic Resonance Imaging: Where Are We (Heading To)? Curr Eye Res 2021; 46:1251-1270. [PMID: 33535828 DOI: 10.1080/02713683.2021.1874021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Magnetic resonance imaging of the eye and orbit (MReye) is a cross-domain research field, combining (bio)physics, (bio)engineering, physiology, data sciences and ophthalmology. A growing number of reports document technical innovations of MReye and promote their application in preclinical research and clinical science. Realizing the progress and promises, this review outlines current trends in MReye. Examples of MReye strategies and their clinical relevance are demonstrated. Frontier applications in ocular oncology, refractive surgery, ocular muscle disorders and orbital inflammation are presented and their implications for explorations into ophthalmic diseases are provided. Substantial progress in anatomically detailed, high-spatial resolution MReye of the eye, orbit and optic nerve is demonstrated. Recent developments in MReye of ocular tumors are explored, and its value for personalized eye models derived from machine learning in the treatment planning of uveal melanoma and evaluation of retinoblastoma is highlighted. The potential of MReye for monitoring drug distribution and for improving treatment management and the assessment of individual responses is discussed. To open a window into the eye and into (patho)physiological processes that in the past have been largely inaccessible, advances in MReye at ultrahigh magnetic field strengths are discussed. A concluding section ventures a glance beyond the horizon and explores future directions of MReye across multiple scales, including in vivo electrolyte mapping of sodium and other nuclei. This review underscores the need for the (bio)medical imaging and ophthalmic communities to expand efforts to find solutions to the remaining unsolved problems and technical obstacles of MReye, with the objective to transfer methodological advancements driven by MR physics into genuine clinical value.
Collapse
Affiliation(s)
- Thoralf Niendorf
- MRI.TOOLS GmbH, Berlin, Germany.,Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jan-Willem M Beenakker
- Department of Ophthalmology and Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sönke Langner
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Katharina Erb-Eigner
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Meritxell Bach Cuadra
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Ebba Beller
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, Rostock, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Oliver Stachs
- Department Life, Light & Matter, University Rostock, Rostock, Germany.,Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|