1
|
Guo F, Zhao C, Shou Q, Jin N, Jann K, Shao X, Wang DJJ. Assessing Cerebral Microvascular Volumetric Pulsatility with High-Resolution 4D CBV MRI at 7T. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.04.24313077. [PMID: 39281763 PMCID: PMC11398588 DOI: 10.1101/2024.09.04.24313077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Arterial pulsation is crucial for promoting fluid circulation and for influencing neuronal activity. Previous studies assessed the pulsatility index based on blood flow velocity pulsatility in relatively large cerebral arteries of human. Here, we introduce a novel method to quantify the volumetric pulsatility of cerebral microvasculature across cortical layers and in white matter (WM), using high-resolution 4D vascular space occupancy (VASO) MRI with simultaneous recording of pulse signals at 7T. Microvascular volumetric pulsatility index (mvPI) and cerebral blood volume (CBV) changes across cardiac cycles are assessed through retrospective sorting of VASO signals into cardiac phases and estimating mean CBV in resting state (CBV0) by arterial spin labeling (ASL) MRI at 7T. Using data from 11 young (28.4±5.8 years) and 7 older (61.3±6.2 years) healthy participants, we investigated the aging effect on mvPI and compared microvascular pulsatility with large arterial pulsatility assessed by 4D-flow MRI. We observed the highest mvPI in the cerebrospinal fluid (CSF) on the cortical surface (0.19±0.06), which decreased towards the cortical layers as well as in larger arteries. In the deep WM, a significantly increased mvPI (p = 0.029) was observed in the older participants compared to younger ones. Additionally, mvPI in deep WM is significantly associated with the velocity pulsatility index (vePI) of large arteries (r = 0.5997, p = 0.0181). We further performed test-retest scans, non-parametric reliability test and simulations to demonstrate the reproducibility and accuracy of our method. To the best of our knowledge, our method offers the first in vivo measurement of microvascular volumetric pulsatility in human brain which has implications for cerebral microvascular health and its relationship research with glymphatic system, aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fanhua Guo
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Chenyang Zhao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | | | - Kay Jann
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| |
Collapse
|
2
|
Finn ES, Poldrack RA, Shine JM. Functional neuroimaging as a catalyst for integrated neuroscience. Nature 2023; 623:263-273. [PMID: 37938706 DOI: 10.1038/s41586-023-06670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/22/2023] [Indexed: 11/09/2023]
Abstract
Functional magnetic resonance imaging (fMRI) enables non-invasive access to the awake, behaving human brain. By tracking whole-brain signals across a diverse range of cognitive and behavioural states or mapping differences associated with specific traits or clinical conditions, fMRI has advanced our understanding of brain function and its links to both normal and atypical behaviour. Despite this headway, progress in human cognitive neuroscience that uses fMRI has been relatively isolated from rapid advances in other subdomains of neuroscience, which themselves are also somewhat siloed from one another. In this Perspective, we argue that fMRI is well-placed to integrate the diverse subfields of systems, cognitive, computational and clinical neuroscience. We first summarize the strengths and weaknesses of fMRI as an imaging tool, then highlight examples of studies that have successfully used fMRI in each subdomain of neuroscience. We then provide a roadmap for the future advances that will be needed to realize this integrative vision. In this way, we hope to demonstrate how fMRI can help usher in a new era of interdisciplinary coherence in neuroscience.
Collapse
Affiliation(s)
- Emily S Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Dartmouth, NH, USA.
| | | | - James M Shine
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Jia K, Goebel R, Kourtzi Z. Ultra-High Field Imaging of Human Visual Cognition. Annu Rev Vis Sci 2023; 9:479-500. [PMID: 37137282 DOI: 10.1146/annurev-vision-111022-123830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Functional magnetic resonance imaging (fMRI), the key methodology for mapping the functions of the human brain in a noninvasive manner, is limited by low temporal and spatial resolution. Recent advances in ultra-high field (UHF) fMRI provide a mesoscopic (i.e., submillimeter resolution) tool that allows us to probe laminar and columnar circuits, distinguish bottom-up versus top-down pathways, and map small subcortical areas. We review recent work demonstrating that UHF fMRI provides a robust methodology for imaging the brain across cortical depths and columns that provides insights into the brain's organization and functions at unprecedented spatial resolution, advancing our understanding of the fine-scale computations and interareal communication that support visual cognition.
Collapse
Affiliation(s)
- Ke Jia
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom;
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
4
|
Heynckes M, Lage-Castellanos A, De Weerd P, Formisano E, De Martino F. Layer-specific correlates of detected and undetected auditory targets during attention. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100075. [PMID: 36755988 PMCID: PMC9900365 DOI: 10.1016/j.crneur.2023.100075] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/24/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
In everyday life, the processing of acoustic information allows us to react to subtle changes in the auditory scene. Yet even when closely attending to sounds in the context of a task, we occasionally miss task-relevant features. The neural computations that underlie our ability to detect behavioral relevant sound changes are thought to be grounded in both feedforward and feedback processes within the auditory hierarchy. Here, we assessed the role of feedforward and feedback contributions in primary and non-primary auditory areas during behavioral detection of target sounds using submillimeter spatial resolution functional magnetic resonance imaging (fMRI) at high-fields (7 T) in humans. We demonstrate that the successful detection of subtle temporal shifts in target sounds leads to a selective increase of activation in superficial layers of primary auditory cortex (PAC). These results indicate that feedback signals reaching as far back as PAC may be relevant to the detection of targets in the auditory scene.
Collapse
Affiliation(s)
- Miriam Heynckes
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Agustin Lage-Castellanos
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands
| | - Elia Formisano
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands,Maastricht Centre for Systems Biology, Maastricht University, Universiteitssingel 60, 6229 ER, Maastricht, the Netherlands
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER, Maastricht, the Netherlands,Corresponding author. Federico De Martino Department Cognitive Neuroscience Oxfordlaan 55, 6229EV, Maastricht, the Netherlands.
| |
Collapse
|
5
|
Liang H, Pan Z, Qian C, Liu C, Sun K, Weng D, An J, Zhuo Y, Wang DJJ, Guo H, Xue R. Multi-echo balanced SSFP with a sequential phase-encoding order for functional MR imaging at 7T. Magn Reson Med 2022; 88:1303-1313. [PMID: 35657055 DOI: 10.1002/mrm.29301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE To develop a 2D multi-echo passband balanced SSFP (bSSFP) sequence using an echo-train readout with a sequential phase-encoding order (sequential multi-echo bSSFP), and evaluate its performance in fast functional brain imaging at 7 T. METHODS As images of sequential multi-echo bSSFP exhibit multiple ghosts due to periodic k-space modulations, a GRAPPA-based reconstruction method was proposed to eliminate ghosting artifacts. MRI experiments were performed to compare the image quality of multi-echo bSSFP and conventional single-echo bSSFP. Submillimeter-resolution fMRI using a checkerboard visual stimulus was conducted to compare the activation characteristics of multi-echo bSSFP, conventional single-echo bSSFP and standard gradient-echo EPI (GE-EPI). RESULTS A higher mean structural similarity index was found between images of single-echo bSSFP and multi-echo bSSFP with a shorter echo train length (ETL). Multi-echo bSSFP (ETL = 3) showed higher temporal SNR (tSNR) values than GRAPPA-accelerated single-echo bSSFP (R = 2). In submillimeter-resolution fMRI experiments, multi-echo bSSFP (ETL = 3) approached the imaging speed of GRAPPA-accelerated single-echo bSSFP (R = 2), but without tSNR penalty and reduced activation due to acceleration. The median t-value and the number of significantly activated voxels were comparable between GE-EPI and multi-echo bSSFP (ETL = 3) that provides virtually distortion-free functional images and inherits the activation patterns of conventional bSSFP. CONCLUSION Sequential multi-echo bSSFP (ETL = 3) is suitable for fast fMRI with submillimeter in-plane resolution, and offers an option to accelerate bSSFP imaging without tSNR penalty like parallel imaging.
Collapse
Affiliation(s)
- Huilou Liang
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ziyi Pan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Chencan Qian
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chengwen Liu
- Medical Psychological Center, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Kaibao Sun
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dehe Weng
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Jing An
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
6
|
Shao X, Guo F, Shou Q, Wang K, Jann K, Yan L, Toga AW, Zhang P, Wang DJJ. Laminar perfusion imaging with zoomed arterial spin labeling at 7 Tesla. Neuroimage 2021; 245:118724. [PMID: 34780918 PMCID: PMC8727512 DOI: 10.1016/j.neuroimage.2021.118724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/23/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022] Open
Abstract
Laminar fMRI based on BOLD and CBV contrast at ultrahigh magnetic fields has been applied for studying the dynamics of mesoscopic brain networks. However, the quantitative interpretations of BOLD/CBV fMRI results are confounded by different baseline physiology across cortical layers. Here we introduce a novel 3D zoomed pseudo-continuous arterial spin labeling (pCASL) technique at 7T that offers the capability for quantitative measurements of laminar cerebral blood flow (CBF) both at rest and during task activation with high spatial specificity and sensitivity. We found arterial transit time in superficial layers is ∼100 ms shorter than in middle/deep layers revealing the time course of labeled blood flowing from pial arteries to downstream microvasculature. Resting state CBF peaked in the middle layers which is highly consistent with microvascular density measured from human cortex specimens. Finger tapping induced a robust two-peak laminar profile of CBF increases in the superficial (somatosensory and premotor input) and deep (spinal output) layers of M1, while finger brushing task induced a weaker CBF increase in superficial layers (somatosensory input). This observation is highly consistent with reported laminar profiles of CBV activation on M1. We further demonstrated that visuospatial attention induced a predominant CBF increase in deep layers and a smaller CBF increase on top of the lower baseline CBF in superficial layers of V1 (feedback cortical input), while stimulus driven activity peaked in the middle layers (feedforward thalamic input). With the capability for quantitative CBF measurements both at baseline and during task activation, high-resolution ASL perfusion fMRI at 7T provides an important tool for in vivo assessment of neurovascular function and metabolic activities of neural circuits across cortical layers.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Fanhua Guo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Kai Wang
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Kay Jann
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lirong Yan
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
7
|
Huang P, Correia MM, Rua C, Rodgers CT, Henson RN, Carlin JD. Correcting for Superficial Bias in 7T Gradient Echo fMRI. Front Neurosci 2021; 15:715549. [PMID: 34630010 PMCID: PMC8494131 DOI: 10.3389/fnins.2021.715549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
The arrival of submillimeter ultra high-field fMRI makes it possible to compare activation profiles across cortical layers. However, the blood oxygenation level dependent (BOLD) signal measured by gradient echo (GE) fMRI is biased toward superficial layers of the cortex, which is a serious confound for laminar analysis. Several univariate and multivariate analysis methods have been proposed to correct this bias. We compare these methods using computational simulations of 7T fMRI data from regions of interest (ROI) during a visual attention paradigm. We also tested the methods on a pilot dataset of human 7T fMRI data. The simulations show that two methods–the ratio of ROI means across conditions and a novel application of Deming regression–offer the most robust correction for superficial bias. Deming regression has the additional advantage that it does not require that the conditions differ in their mean activation over voxels within an ROI. When applied to the pilot dataset, we observed strikingly different layer profiles when different attention metrics were used, but were unable to discern any differences in laminar attention across layers when Deming regression or ROI ratio was applied. Our simulations demonstrates that accurate correction of superficial bias is crucial to avoid drawing erroneous conclusions from laminar analyses of GE fMRI data, and this is affirmed by the results from our pilot 7T fMRI data.
Collapse
Affiliation(s)
- Pei Huang
- Singapore Institute for Clinical Sciences, A∗STAR, Singapore, Singapore.,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Marta M Correia
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Catarina Rua
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | | | - Richard N Henson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Johan D Carlin
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Iamshchinina P, Kaiser D, Yakupov R, Haenelt D, Sciarra A, Mattern H, Luesebrink F, Duezel E, Speck O, Weiskopf N, Cichy RM. Perceived and mentally rotated contents are differentially represented in cortical depth of V1. Commun Biol 2021; 4:1069. [PMID: 34521987 PMCID: PMC8440580 DOI: 10.1038/s42003-021-02582-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/20/2021] [Indexed: 11/12/2022] Open
Abstract
Primary visual cortex (V1) in humans is known to represent both veridically perceived external input and internally-generated contents underlying imagery and mental rotation. However, it is unknown how the brain keeps these contents separate thus avoiding a mixture of the perceived and the imagined which could lead to potentially detrimental consequences. Inspired by neuroanatomical studies showing that feedforward and feedback connections in V1 terminate in different cortical layers, we hypothesized that this anatomical compartmentalization underlies functional segregation of external and internally-generated visual contents, respectively. We used high-resolution layer-specific fMRI to test this hypothesis in a mental rotation task. We found that rotated contents were predominant at outer cortical depth bins (i.e. superficial and deep). At the same time perceived contents were represented stronger at the middle cortical bin. These results identify how through cortical depth compartmentalization V1 functionally segregates rather than confuses external from internally-generated visual contents. These results indicate that feedforward and feedback manifest in distinct subdivisions of the early visual cortex, thereby reflecting a general strategy for implementing multiple cognitive functions within a single brain region.
Collapse
Affiliation(s)
- Polina Iamshchinina
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Daniel Kaiser
- Department of Psychology, University of York, Heslington, York, UK
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Haenelt
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alessandro Sciarra
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hendrik Mattern
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
| | - Falk Luesebrink
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Emrah Duezel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Oliver Speck
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Radoslaw Martin Cichy
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Haun AM. What is visible across the visual field? Neurosci Conscious 2021; 2021:niab006. [PMID: 34084558 PMCID: PMC8167368 DOI: 10.1093/nc/niab006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 11/09/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
It is sometimes claimed that because the resolution and sensitivity of visual perception are better in the fovea than in the periphery, peripheral vision cannot support the same kinds of colour and sharpness percepts as foveal vision. The fact that a scene nevertheless seems colourful and sharp throughout the visual field then poses a puzzle. In this study, I use a detailed model of human spatial vision to estimate the visibility of certain properties of natural scenes, including aspects of colourfulness, sharpness, and blurriness, across the visual field. The model is constructed to reproduce basic aspects of human contrast and colour sensitivity over a range of retinal eccentricities. I apply the model to colourful, complex natural scene images, and estimate the degree to which colour and edge information are present in the model's representation of the scenes. I find that, aside from the intrinsic drift in the spatial scale of the representation, there are not large qualitative differences between foveal and peripheral representations of 'colourfulness' and 'sharpness'.
Collapse
Affiliation(s)
- Andrew M Haun
- Center for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
10
|
de Hollander G, van der Zwaag W, Qian C, Zhang P, Knapen T. Ultra-high field fMRI reveals origins of feedforward and feedback activity within laminae of human ocular dominance columns. Neuroimage 2020; 228:117683. [PMID: 33385565 DOI: 10.1016/j.neuroimage.2020.117683] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/02/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Ultra-high field MRI can functionally image the cerebral cortex of human subjects at the submillimeter scale of cortical columns and laminae. Here, we investigate both in concert, by imaging ocular dominance columns (ODCs) in primary visual cortex (V1) across different cortical depths. We ensured that putative ODC patterns in V1 (a) are stable across runs, sessions, and scanners located in different continents, (b) have a width (~1.3 mm) expected from post-mortem and animal work and (c) are absent at the retinotopic location of the blind spot. We then dissociated the effects of bottom-up thalamo-cortical input and attentional feedback processes on activity in V1 across cortical depth. Importantly, the separation of bottom-up information flows into ODCs allowed us to validly compare attentional conditions while keeping the stimulus identical throughout the experiment. We find that, when correcting for draining vein effects and using both model-based and model-free approaches, the effect of monocular stimulation is largest at deep and middle cortical depths. Conversely, spatial attention influences BOLD activity exclusively near the pial surface. Our findings show that simultaneous interrogation of columnar and laminar dimensions of the cortical fold can dissociate thalamocortical inputs from top-down processing, and allow the investigation of their interactions without any stimulus manipulation.
Collapse
Affiliation(s)
- Gilles de Hollander
- Department of Psychology, Vrije Universiteit Amsterdam, the Netherlands; Zurich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, Zurich, Switzerland; Spinoza Centre for Neuroimaging, Royal Academy of Sciences, Amsterdam, the Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, Royal Academy of Sciences, Amsterdam, the Netherlands
| | - Chencan Qian
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tomas Knapen
- Department of Psychology, Vrije Universiteit Amsterdam, the Netherlands; Spinoza Centre for Neuroimaging, Royal Academy of Sciences, Amsterdam, the Netherlands
| |
Collapse
|