1
|
Li H, Wang Y, Wang Z, Mu N, Chen T, Xu D, Feng H, Yao J. High-sensitivity THz-ATR imaging of cerebral ischemia in a rat model. BIOMEDICAL OPTICS EXPRESS 2024; 15:3743-3754. [PMID: 38867801 PMCID: PMC11166429 DOI: 10.1364/boe.524466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
The fast label-free detection of the extent and degree of cerebral ischemia has been the difficulty and hotspot for precise and accurate neurosurgery. We experimentally demonstrated that the fresh cerebral tissues at different ischemic stages within 24 hours can be well distinguished from the normal tissues using terahertz (THz) attenuated total reflection (ATR) imaging system. It was indicated that the total reflectivity of THz wave for ischemic cerebral tissues was lower than that for normal tissues. Especially, compared to the images stained with 2,3,5-triphenyl tetrazolium chloride (TTC), the ischemic tissues can be detected using THz wave with high sensitivity as early as the ischemic time of 2.5 hours, where THz images showed the ischemic areas became larger and diffused as the ischemic time increasing. Furthermore, the THz spectroscopy of cerebral ischemic tissues at different ischemic times was obtained in the range of 0.5-2.0 THz. The absorption coefficient of ischemic tissue increased with the increase of ischemic time, whereas the refractive index decreased with prolonging the ischemic time. Additionally, it was found from hematoxylin and eosin (H&E) staining microscopic images that, with the ischemic time increasing, the cell size and cell density of the ischemic tissues decreased, whereas the intercellular substance of the ischemic tissues increased. The result showed that THz recognition mechanism of the ischemia is mainly based on the increase of intercellular substance, especially water content, which has a stronger impact on absorption of THz wave than that of cell density. Thus, THz imaging has great potential for recognition of cerebral ischemia and it may become a new method for intraoperative real-time guidance, recognition in situ, and precise excision.
Collapse
Affiliation(s)
- Haibin Li
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yuye Wang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Zelong Wang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Ning Mu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Degang Xu
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianquan Yao
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Liu H, An N, Wang L, Li Y, Song K, Sun Y, Gao Y. Protective effect of Xingnaojing injection on ferroptosis after cerebral ischemia injury in MCAO rats and SH-SY5Y cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115836. [PMID: 36252877 DOI: 10.1016/j.jep.2022.115836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xingnaojing(XNJ)injection is a traditional Chinese medicine injection with neuroprotective effect, which has been widely used in the treatment of stroke for many years. AIM OF THE STUDY This study aimed to explore the potential mechanism of XNJ in cerebral ischemia mediated by ferroptosis using proteomics and in vivo and in vitro experiments. MATERIALS AND METHODS After the rat model of middle cerebral artery occlusion (MCAO) was successfully established, they were randomly divided into model, XNJ, and deferoxamine (DFO) group. Triphenyl tetrazolium chloride (TTC) staining, Hematoxylin and eosin (H&E), and Nissl staining were used to observe the infarct area, pathological changes and the degree of neuronal apoptosis of rat brain. Proteins extracted from rat brain tissues were analyzed by quantitative proteomics using tandem mass tags (TMT). Western blotting and immunohistochemical assessment were used to measure the expression of ferroptosis-related proteins. In vitro, the SH-SY5Y cells were subjected to hypoxia (37°C/5% CO2/1% O2) for 24 h to observe the survival rate, and detect the reactive oxygen species (ROS) content and ferroptosis-related proteins. RESULTS In TTC and H&E experiments, we found that XNJ drug treatment reduced the infarct volume and brain tissue damage in MCAO rats. Nissl staining also showed that compared with MCAO group rats, the Nissl bodies of brain tissue after XNJ drug intervention were clear with a 3.54-fold increased times, suggesting that XNJ improved cerebral infraction, and neurological deficits in MCAO rats. Proteomics identified 101 intersected differentially expressed proteins (DEPs). According to the bioinformatics analysis, these DEPs were closely related to ferroptosis. Further research indicated that MCAO-induced cerebral ischemia was alleviated by upregulating recombinant glutathione peroxidase 4 (GPX4), ferroportin (FPN) expression, Heme oxygenase-1 (HO-1) expression, and downregulating cyclooxygenase-2 (COX-2), transferring receptor (TFR) and divalent metal transporter-1 (DMT1) expression after XNJ treatment. In addition, in vitro experiment indicated that XNJ improved the survival rate of hypoxia-damaged SH-SY5Y cells. XNJ increased the level of GPX4 and inhibited the protein expression of COX-2 and TFR after cell hypoxia. Moreover, different concentrations of XNJ (0.25%, 0.5%, 1%) reduced the ROS content of hypoxic cells, suggesting that XNJ could inhibit hypoxia-induced cell damage by regulating the expression of ferroptosis-related proteins and decreasing the production of ROS. CONCLUSIONS XNJ could promote the recovery of neurological function in MCAO rats and hypoxia SH-SY5Y cells by regulating ferroptosis.
Collapse
Affiliation(s)
- Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Liqin Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Baotou Mongolian Traditional Chinese Medicine Hospital, Inner Mongolia Municipality, Baotou, 014040, China.
| | - Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Ke Song
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
3
|
Zihni E, McGarry BL, Kelleher JD. Moving Toward Explainable Decisions of Artificial Intelligence Models for the Prediction of Functional Outcomes of Ischemic Stroke Patients. Digit Health 2022. [DOI: 10.36255/exon-publications-digital-health-explainable-decisions] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Timing the Ischemic Stroke by Multiparametric Quantitative Magnetic Resonance Imaging. Stroke 2021. [DOI: 10.36255/exonpublications.stroke.timingischemicstroke.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
5
|
McGarry BL, Damion RA, Chew I, Knight MJ, Harston GW, Carone D, Jezzard P, Sitaram A, Muir KW, Clatworthy P, Kauppinen RA. A Comparison of T 2 Relaxation-Based MRI Stroke Timing Methods in Hyperacute Ischemic Stroke Patients: A Pilot Study. J Cent Nerv Syst Dis 2020; 12:1179573520943314. [PMID: 32963473 PMCID: PMC7488882 DOI: 10.1177/1179573520943314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022] Open
Abstract
Background: T2 relaxation-based magnetic resonance imaging (MRI) signals may provide onset time for acute ischemic strokes with an unknown onset. The ability of visual and quantitative MRI-based methods in a cohort of hyperacute ischemic stroke patients was studied. Methods: A total of 35 patients underwent 3T (3 Tesla) MRI (<9-hour symptom onset). Diffusion-weighted (DWI), apparent diffusion coefficient (ADC), T1-weighted (T1w), T2-weighted (T2w), and T2 relaxation time (T2) images were acquired. T2-weighted fluid attenuation inversion recovery (FLAIR) images were acquired for 17 of these patients. Image intensity ratios of the average intensities in ischemic and non-ischemic reference regions were calculated for ADC, DWI, T2w, T2 relaxation, and FLAIR images, and optimal image intensity ratio cut-offs were determined. DWI and FLAIR images were assessed visually for DWI/FLAIR mismatch. Results: The T2 relaxation time image intensity ratio was the only parameter with significant correlation with stroke duration (r = 0.49, P = .003), an area under the receiver operating characteristic curve (AUC = 0.77, P < .0001), and an optimal cut-off (T2 ratio = 1.072) that accurately identified patients within the 4.5-hour thrombolysis treatment window with sensitivity of 0.74 and specificity of 0.74. In the patients with the additional FLAIR, areas under the precision-recall-gain curve (AUPRG) and F1 scores showed that the T2 relaxation time ratio (AUPRG = 0.60, F1 = 0.73) performed considerably better than the FLAIR ratio (AUPRG = 0.39, F1 = 0.57) and the visual DWI/FLAIR mismatch (F1 = 0.25). Conclusions: Quantitative T2 relaxation time is the preferred MRI parameter in the assessment of patients with unknown onset for treatment stratification.
Collapse
Affiliation(s)
- Bryony L McGarry
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Robin A Damion
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Isabel Chew
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Michael J Knight
- School of Psychological Science, University of Bristol, Bristol, UK
| | - George Wj Harston
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Davide Carone
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Peter Jezzard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Amith Sitaram
- Institute of Neuroscience and Psychology, Queen Elizabeth University Hospital, University of Glasgow, Glasgow, UK
| | - Keith W Muir
- Institute of Neuroscience and Psychology, Queen Elizabeth University Hospital, University of Glasgow, Glasgow, UK
| | - Philip Clatworthy
- Stroke Neurology, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | | |
Collapse
|
6
|
Knight MJ, Damion RA, McGarry BL, Bosnell R, Jokivarsi KT, Gröhn OHJ, Jezzard P, Harston GWJ, Carone D, Kennedy J, El-Tawil S, Elliot J, Muir KW, Clatworthy P, Kauppinen RA. Determining T2 relaxation time and stroke onset relationship in ischaemic stroke within apparent diffusion coefficient-defined lesions. A user-independent method for quantifying the impact of stroke in the human brain. BIOMEDICAL SPECTROSCOPY AND IMAGING 2019; 8:11-28. [PMID: 31328097 PMCID: PMC6640032 DOI: 10.3233/bsi-190185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE In hyperacute ischaemic stroke, T2 of cerebral water increases with time. Quantifying this change may be informative of the extent of tissue damage and onset time. Our objective was to develop a user-unbiased method to measure the effect of cerebral ischaemia on T2 to study stroke onset time-dependency in human acute stroke lesions. METHODS Six rats were subjected to permanent middle cerebral occlusion to induce focal ischaemia, and a consecutive cohort of acute stroke patients (n = 38) were recruited within 9 hours from symptom onset. T1-weighted structural, T2 relaxometry, and diffusion MRI for apparent diffusion coefficient (ADC) were acquired. Ischaemic lesions were defined as regions of lowered ADC. The median T2 difference (ΔT2) between lesion and contralateral non-ischaemic control region was determined by the newly-developed spherical reference method, and data compared to that obtained by the mirror reference method. Linear regressions and receiver operating characteristics (ROC) were compared between the two methods. RESULTS ΔT2 increases linearly in rat brain ischaemia by 1.9 ± 0.8 ms/h during the first 6 hours, as determined by the spherical reference method. In patients, ΔT2 linearly increases by 1.6 ± 1.4 and 1.9 ± 0.9 ms/h in the lesion, as determined by the mirror reference and spherical reference method, respectively. ROC analyses produced areas under the curve of 0.83 and 0.71 for the spherical and mirror reference methods, respectively. CONCLUSIONS Data from the spherical reference method showed that the median T2 increase in the ischaemic lesion is correlated with stroke onset time in a rat as well as in a human patient cohort, opening the possibility of using the approach as a timing tool in clinics.
Collapse
Affiliation(s)
- Michael J Knight
- School of Experimental Psychology, University of Bristol, Bristol, UK; Stroke Medicine, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Robin A Damion
- School of Experimental Psychology, University of Bristol, Bristol, UK; Stroke Medicine, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Bryony L McGarry
- School of Experimental Psychology, University of Bristol, Bristol, UK; Stroke Medicine, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Rose Bosnell
- Stroke Neurology, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Kimmo T Jokivarsi
- Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Olli H J Gröhn
- Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Peter Jezzard
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Sciences, University of Oxford, Oxford UK
| | - George W J Harston
- Acute Stroke programme, Radcliff Department of Medicine, University of Oxford, UK
| | - Davide Carone
- Acute Stroke programme, Radcliff Department of Medicine, University of Oxford, UK
| | - James Kennedy
- Acute Stroke programme, Radcliff Department of Medicine, University of Oxford, UK
| | - Salwa El-Tawil
- Institute of Neuroscience and Psychology, Queen Elizabeth University Hospital, University of Glasgow, Scotland
| | - Jennifer Elliot
- Institute of Neuroscience and Psychology, Queen Elizabeth University Hospital, University of Glasgow, Scotland
| | - Keith W Muir
- Institute of Neuroscience and Psychology, Queen Elizabeth University Hospital, University of Glasgow, Scotland
| | - Philip Clatworthy
- Stroke Neurology, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| | - Risto A Kauppinen
- School of Experimental Psychology, University of Bristol, Bristol, UK; Stroke Medicine, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
| |
Collapse
|
7
|
Damion RA, Knight MJ, McGarry BL, Bosnell R, Jezzard P, Harston GW, Carone D, Kennedy J, El-Tawil S, Elliot J, Muir KW, Clatworthy P, Kauppinen RA. Quantifying T 2 relaxation time changes within lesions defined by apparent diffusion coefficient in grey and white matter in acute stroke patients. Phys Med Biol 2019; 64:095016. [PMID: 30921782 DOI: 10.1088/1361-6560/ab1442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The apparent diffusion coefficient (ADC) of cerebral water, as measured by diffusion MRI, rapidly decreases in ischaemia, highlighting a lesion in acute stroke patients. The MRI T 2 relaxation time changes in ischaemic brain such that T 2 in ADC lesions may be informative of the extent of tissue damage, potentially aiding in stratification for treatment. We have developed a novel user-unbiased method of determining the changes in T 2 in ADC lesions as a function of clinical symptom duration based on voxel-wise referencing to a contralateral brain volume. The spherical reference method calculates the most probable pre-ischaemic T 2 on a voxel-wise basis, making use of features of the contralateral hemisphere presumed to be largely unaffected. We studied whether T 2 changes in the two main cerebral tissue types, i.e. in grey matter (GM) and white matter (WM), would differ in stroke. Thirty-eight acute stroke patients were accrued within 9 h of symptom onset and scanned at 3 T for 3D T 1-weighted, multi b-value diffusion and multi-echo spin echo MRI for tissue type segmentation, quantitative ADC and absolute T 2 images, respectively. T 2 changes measured by the spherical reference method were 1.94 ± 0.61, 1.50 ± 0.52 and 1.40 ± 0.54 ms h-1 in the whole, GM, and WM lesions, respectively. Thus, T 2 time courses were comparable between GM and WM independent of brain tissue type involved. We demonstrate that T 2 changes in ADC-delineated lesions can be quantified in the clinical setting in a user unbiased manner and that T 2 change correlated with symptom onset time, opening the possibility of using the approach as a tool to assess severity of tissue damage in the clinical setting.
Collapse
Affiliation(s)
- Robin A Damion
- School of Psychological Science, University of Bristol, 12a Priory Rd, Bristol BS8 1TU, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nikolić V, Savić S, Antunović V, Marinković S, Andrieux C, Tomić I. Decapitation in reality and fine art: A review. Forensic Sci Int 2017; 280:103-112. [DOI: 10.1016/j.forsciint.2017.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/07/2017] [Accepted: 09/18/2017] [Indexed: 12/27/2022]
|
9
|
McGarry BL, Jokivarsi KT, Knight MJ, Grohn OHJ, Kauppinen RA. Magnetic Resonance Imaging Protocol for Stroke Onset Time Estimation in Permanent Cerebral Ischemia. J Vis Exp 2017; 2017. [PMID: 28979652 PMCID: PMC5624498 DOI: 10.3791/55277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
MRI provides a sensitive and specific imaging tool to detect acute ischemic stroke by means of a reduced diffusion coefficient of brain water. In a rat model of ischemic stroke, differences in quantitative T1 and T2 MRI relaxation times (qT1 and qT2) between the ischemic lesion (delineated by low diffusion) and the contralateral non-ischemic hemisphere increase with time from stroke onset. The time dependency of MRI relaxation time differences is heuristically described by a linear function and thus provides a simple estimate of stroke onset time. Additionally, the volumes of abnormal qT1 and qT2 within the ischemic lesion increase linearly with time providing a complementary method for stroke timing. A (semi)automated computer routine based on the quantified diffusion coefficient is presented to delineate acute ischemic stroke tissue in rat ischemia. This routine also determines hemispheric differences in qT1 and qT2 relaxation times and the location and volume of abnormal qT1 and qT2 voxels within the lesion. Uncertainties associated with onset time estimates of qT1 and qT2 MRI data vary from ± 25 min to ± 47 min for the first 5 hours of stroke. The most accurate onset time estimates can be obtained by quantifying the volume of overlapping abnormal qT1 and qT2 lesion volumes, termed 'Voverlap' (± 25 min) or by quantifying hemispheric differences in qT2 relaxation times only (± 28 min). Overall, qT2 derived parameters outperform those from qT1. The current MRI protocol is tested in the hyperacute phase of a permanent focal ischemia model, which may not be applicable to transient focal brain ischemia.
Collapse
Affiliation(s)
- Bryony L McGarry
- School of Experimental Psychology and Clinical Research and Imaging Center Bristol, University of Bristol, Bristol, UK
| | - Kimmo T Jokivarsi
- Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Michael J Knight
- School of Experimental Psychology and Clinical Research and Imaging Center Bristol, University of Bristol, Bristol, UK
| | - Olli H J Grohn
- Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Risto A Kauppinen
- School of Experimental Psychology and Clinical Research and Imaging Center Bristol, University of Bristol, Bristol, UK
| |
Collapse
|
10
|
McGarry BL, Rogers HJ, Knight MJ, Jokivarsi KT, Gröhn OH, Kauppinen RA. Determining Stroke Onset Time Using Quantitative MRI: High Accuracy, Sensitivity and Specificity Obtained from Magnetic Resonance Relaxation Times. Cerebrovasc Dis Extra 2016. [PMCID: PMC5040899 DOI: 10.1159/000448814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Many ischaemic stroke patients are ineligible for thrombolytic therapy due to unknown onset time. Quantitative MRI (qMRI) is a potential surrogate for stroke timing. Rats were subjected to permanent middle cerebral artery occlusion and qMRI parameters including hemispheric differences in apparent diffusion coefficient, T2-weighted signal intensities, T1 and T2 relaxation times (qT1, qT2) and f1, f2 and Voverlap were measured at hourly intervals at 4.7 or 9.4 T. Accuracy and sensitivity for identifying strokes scanned within and beyond 3 h of onset was determined. Accuracy for Voverlap, f2 and qT2 (>90%) was significantly higher than other parameters. At a specificity of 1, sensitivity was highest for Voverlap (0.90) and f2 (0.80), indicating promise of these qMRI indices in the clinical assessment of stroke onset time.
Collapse
Affiliation(s)
- Bryony L. McGarry
- School of Experimental Psychology, University of Bristol, London, UK
- *Bryony L. McGarry, School of Experimental Psychology, University of Bristol, 12a Priory Road, Clifton, Bristol BS8 1TU (UK), E-Mail
| | - Harriet J. Rogers
- Imaging and Biophysics, Institute of Child Health, University College London, London, UK
| | - Michael J. Knight
- School of Experimental Psychology, University of Bristol, London, UK
| | - Kimmo T. Jokivarsi
- Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Olli H.J. Gröhn
- Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | | |
Collapse
|
11
|
McGarry BL, Rogers HJ, Knight MJ, Jokivarsi KT, Sierra A, Gröhn OHJ, Kauppinen RA. Stroke onset time estimation from multispectral quantitative magnetic resonance imaging in a rat model of focal permanent cerebral ischemia. Int J Stroke 2016; 11:677-82. [DOI: 10.1177/1747493016641124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/22/2016] [Indexed: 11/15/2022]
Abstract
Background Quantitative T2 relaxation magnetic resonance imaging allows estimation of stroke onset time. Aims We aimed to examine the accuracy of quantitative T1 and quantitative T2 relaxation times alone and in combination to provide estimates of stroke onset time in a rat model of permanent focal cerebral ischemia and map the spatial distribution of elevated quantitative T1 and quantitative T2 to assess tissue status. Methods Permanent middle cerebral artery occlusion was induced in Wistar rats. Animals were scanned at 9.4T for quantitative T1, quantitative T2, and Trace of Diffusion Tensor (Dav) up to 4 h post-middle cerebral artery occlusion. Time courses of differentials of quantitative T1 and quantitative T2 in ischemic and non-ischemic contralateral brain tissue (ΔT1, ΔT2) and volumes of tissue with elevated T1 and T2 relaxation times ( f1, f2) were determined. TTC staining was used to highlight permanent ischemic damage. Results ΔT1, ΔT2, f1, f2, and the volume of tissue with both elevated quantitative T1 and quantitative T2 (VOverlap) increased with time post-middle cerebral artery occlusion allowing stroke onset time to be estimated. VOverlap provided the most accurate estimate with an uncertainty of ±25 min. At all times-points regions with elevated relaxation times were smaller than areas with Dav defined ischemia. Conclusions Stroke onset time can be determined by quantitative T1 and quantitative T2 relaxation times and tissue volumes. Combining quantitative T1 and quantitative T2 provides the most accurate estimate and potentially identifies irreversibly damaged brain tissue.
Collapse
Affiliation(s)
- Bryony L McGarry
- School of Experimental Psychology, University of Bristol, Bristol, UK
| | - Harriet J Rogers
- School of Experimental Psychology, University of Bristol, Bristol, UK
| | - Michael J Knight
- School of Experimental Psychology, University of Bristol, Bristol, UK
| | - Kimmo T Jokivarsi
- Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Olli HJ Gröhn
- Department of Neurobiology, University of Eastern Finland, Kuopio, Finland
| | - Risto A Kauppinen
- School of Experimental Psychology, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Knight MJ, McGarry BL, Rogers HJ, Jokivarsi KT, Gröhn OHJ, Kauppinen RA. A spatiotemporal theory for MRI T2 relaxation time and apparent diffusion coefficient in the brain during acute ischaemia: Application and validation in a rat acute stroke model. J Cereb Blood Flow Metab 2016; 36:1232-43. [PMID: 26661188 PMCID: PMC4929697 DOI: 10.1177/0271678x15608394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/22/2015] [Indexed: 01/20/2023]
Abstract
The objective of this study is to present a mathematical model which can describe the spatiotemporal progression of cerebral ischaemia and predict magnetic resonance observables including the apparent diffusion coefficient (ADC) of water and transverse relaxation time T2 This is motivated by the sensitivity of the ADC to the location of cerebral ischaemia and T2 to its time-course, and that it has thus far proven challenging to relate observations of changes in these MR parameters to stroke timing, which is of considerable importance in making treatment choices in clinics. Our mathematical model, called the cytotoxic oedema/dissociation (CED) model, is based on the transit of water from the extra- to the intra-cellular environment (cytotoxic oedema) and concomitant degradation of supramacromolecular and macromolecular structures (such as microtubules and the cytoskeleton). It explains experimental observations of ADC and T2, as well as identifying the rate of spread of effects of ischaemia through a tissue as a dominant system parameter. The model brings the direct extraction of the timing of ischaemic stroke from quantitative MRI closer to reality, as well as providing insight on ischaemia pathology by imaging in general. We anticipate that this may improve patient access to thrombolytic treatment as a future application.
Collapse
Affiliation(s)
- Michael J Knight
- School of Experimental Psychology and Clinical Research and Imaging Centre Bristol, University of Bristol, Bristol, UK
| | - Bryony L McGarry
- School of Experimental Psychology and Clinical Research and Imaging Centre Bristol, University of Bristol, Bristol, UK
| | - Harriet J Rogers
- School of Experimental Psychology and Clinical Research and Imaging Centre Bristol, University of Bristol, Bristol, UK
| | - Kimmo T Jokivarsi
- Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Olli H J Gröhn
- Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Risto A Kauppinen
- School of Experimental Psychology and Clinical Research and Imaging Centre Bristol, University of Bristol, Bristol, UK
| |
Collapse
|