1
|
Esmaeilizadshali H, Lehmkuhl S, Korvink J, Jouda M. Localized Shims Enable Low-Field Simultaneous Multinuclear NMR Spectroscopy. Anal Chem 2024; 96:17201-17208. [PMID: 39419494 PMCID: PMC11525927 DOI: 10.1021/acs.analchem.4c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
This Article introduces a smart localized shimset, integrated with a radiofrequency (RF) microsolenoid and optimized as a single unit to locally achieve high-resolution NMR spectroscopy, as a significant advancement toward achieving parallel NMR spectroscopy. The shimset, consisting exclusively of linear shims, demonstrates the capability to improve NMR line width from 84 to 4 Hz in a 1.05 T preclinical MRI scanner. This enhancement enables the resolution of j-couplings in the sample while requiring a total power of 545 mW. Furthermore, a novel method is presented for concurrently obtaining multinuclear NMR spectra using a single RF channel. This approach allows for the utilization of high-sensitivity NMR signals as a reference to correct field drift, facilitating signal averaging in a permanent magnet NMR scanner that is prone to significant temperature-dependent drift.
Collapse
Affiliation(s)
- Hossein Esmaeilizadshali
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Sören Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Jan Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Mazin Jouda
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Vaezi K MR, Korvink JG, Jouda M. Simultaneous multinuclear MRI via a single RF channel. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107782. [PMID: 39413718 DOI: 10.1016/j.jmr.2024.107782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
Magnetic resonance imaging (MRI) stands as one of the most powerful noninvasive and non-destructive imaging techniques, finding extensive utility in medical and industrial applications. Its ability to acquire signals from multiple nuclei grants it additional levels of strength by providing multi-dimensional datasets of the object under test. However, this typically requires dedicated hardware to detect each nucleus. In this paper, we report on the use of a digital lock-in amplifier to perform simultaneous multi-nuclear MRI with a single physical radio frequency (RF) channel. While we showcase this concept by demonstrating the results of fully parallel (TX and RX) 1H and 19F MRI images, we emphasize that it is not limited to two nuclei but can accommodate more nuclei with no extra cost on the hardware or scan time. The scalability is virtually unlimited, constrained only by the processing speed of the digital unit. Furthermore, we demonstrate that the quality of parallel imaging with SNR of 54 is comparable to the commercial single channel with SNR of 43. Thus with no reduction in imaging quality, the proposed concept promises a tremendous reduction in scan time, system complexity, and hardware costs.
Collapse
Affiliation(s)
- Mohammad Rasool Vaezi K
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, Karlsruhe 76131, Germany
| | - Jan G Korvink
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, Karlsruhe 76131, Germany.
| | - Mazin Jouda
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, Karlsruhe 76131, Germany.
| |
Collapse
|
3
|
Liang J, Davoodi H, Wadhwa S, Badilita V, Korvink JG. Broadband stripline Lenz lens achieves 11 × NMR signal enhancement. Sci Rep 2024; 14:1645. [PMID: 38238376 PMCID: PMC10796323 DOI: 10.1038/s41598-023-50616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/22/2023] [Indexed: 01/22/2024] Open
Abstract
A Lenz lens is an electrically passive conductive element that, when placed in a time-varying magnetic field, acts as a magnetic flux concentrator or a magnetic lens. In the realm of nuclear magnetic resonance (NMR), Lenz lenses have been exploited as electrically passive metallic radiofrequency interposers placed between a sample and a tuned or untuned NMR detector in order to focus the [Formula: see text]-field of the detector onto a smaller sample space. Here we explore a novel embodiment of the Lenz lens, which acts as a non-resonant stripline interposer, i.e., the [Formula: see text]-field acts along the longitudinal volume of a sample container, such as a capillary or other microfluidic channel that is coincident with the axis of the stripline. The almost vanishing self-resonance of the stripline Lenz lens, at frequencies relevant for NMR, leads to a desirable [Formula: see text]-field amplitude that is nearly perfectly uniform across the sample and hence lacking a characteristic sinusoidal modal shape. The action of Lenz' law ensures that no stray [Formula: see text]-field is found outside of the stripline's active volume. Because the stripline Lenz lens does not rely on its own geometry to achieve resonance, its frequency response is thus widely broadband for field enhancements up to a factor of 11, with only the external driving resonator properties governing the overall resonant behaviour. We explore the use of the stripline Lenz lens with a sub-nanolitre sample volume, readily detecting 4 isotopes with resonances ranging from 125.76 to 500 MHz. The concept holds potential for the NMR study of thin films, small biological samples, as well as the in situ study of battery materials.
Collapse
Affiliation(s)
- Jianyi Liang
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | | | | | - Vlad Badilita
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
| | - Jan G Korvink
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
4
|
Gomez MV, Baas S, Velders AH. Multinuclear 1D and 2D NMR with 19F-Photo-CIDNP hyperpolarization in a microfluidic chip with untuned microcoil. Nat Commun 2023; 14:3885. [PMID: 37391397 PMCID: PMC10313780 DOI: 10.1038/s41467-023-39537-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is a most powerful molecular characterization and quantification technique, yet two major persistent factors limit its more wide-spread applications: poor sensitivity, and intricate complex and expensive hardware required for sophisticated experiments. Here we show NMR with a single planar-spiral microcoil in an untuned circuit with hyperpolarization option and capability to execute complex experiments addressing simultaneously up to three different nuclides. A microfluidic NMR-chip in which the 25 nL detection volume can be efficiently illuminated with laser-diode light enhances the sensitivity by orders of magnitude via photochemically induced dynamic nuclear polarization (photo-CIDNP), allowing rapid detection of samples in the lower picomole range (normalized limit of detection at 600 MHz, nLODf,600, of 0.01 nmol Hz1/2). The chip is equipped with a single planar microcoil operating in an untuned circuit that allows different Larmor frequencies to be addressed simultaneously, permitting advanced hetero-, di- and trinuclear, 1D and 2D NMR experiments. Here we show NMR chips with photo-CIDNP and broadband capabilities addressing two of the major limiting factors of NMR, by enhancing sensitivity as well as reducing cost and hardware complexity; the performance is compared to state-of-the-art instruments.
Collapse
Affiliation(s)
- M Victoria Gomez
- IRICA, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha (UCLM), Av. Camilo José Cela 10, 13071, Ciudad Real, Spain.
| | - Sander Baas
- Laboratory of BioNanoTechnology, Wageningen University, 6700 EK, Wageningen, The Netherlands
| | - Aldrik H Velders
- IRICA, Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, Universidad de Castilla-La Mancha (UCLM), Av. Camilo José Cela 10, 13071, Ciudad Real, Spain.
- Laboratory of BioNanoTechnology, Wageningen University, 6700 EK, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Untuned broadband spiral micro-coils achieve sensitive multi-nuclear NMR TX/RX from microfluidic samples. Sci Rep 2021; 11:7798. [PMID: 33833324 PMCID: PMC8032710 DOI: 10.1038/s41598-021-87247-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
The low frequency plateau in the frequency response of an untuned micro-resonator permits broadband radio-frequency reception, albeit at the expense of optimal signal-to-noise ratio for a particular nucleus. In this contribution we determine useful figures of merit for broadband micro-coils, and thereby explore the parametric design space towards acceptable simultaneous excitation and reception of a microfluidic sample over a wide frequency band ranging from 13C to 1H, i.e., 125–500 MHz in an 11.74 T magnet. The detector achieves 37% of the performance of a comparably sized, tuned and matched resonator, and a linewidth of 17 ppb using standard magnet shims. The use of broadband detectors circumvents numerous difficulties introduced by multi-resonant RF detector circuits, including sample loading effects on matching, channel isolation, and field distortion.
Collapse
|
6
|
Design of High Performance Scroll Microcoils for Nuclear Magnetic Resonance Spectroscopy of Nanoliter and Subnanoliter Samples. SENSORS 2020; 21:s21010170. [PMID: 33383815 PMCID: PMC7795071 DOI: 10.3390/s21010170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 01/05/2023]
Abstract
The electromagnetic properties of scroll microcoils are investigated with finite element modelling (FEM) and the design of experiment (DOE) approach. The design of scroll microcoils was optimized for nuclear magnetic resonance (NMR) spectroscopy of nanoliter and subnanoliter sample volumes. The unusual proximity effect favours optimised scroll microcoils with a large number of turns rolled up in close proximity. Scroll microcoils have many advantages over microsolenoids: such as ease of fabrication and better B1-homogeneity for comparable intrinsic signal-to-noise ratio (SNR). Scroll coils are suitable for broadband multinuclei NMR spectroscopy of subnanoliter sample.
Collapse
|
7
|
Barker DS, Restelli A, Fedchak JA, Scherschligt J, Eckel S. A radiofrequency voltage-controlled current source for quantum spin manipulation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:104708. [PMID: 33138586 PMCID: PMC11382295 DOI: 10.1063/5.0011813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
We present a wide-bandwidth, voltage-controlled current source that is easily integrated with radiofrequency magnetic field coils. Our design uses current feedback to compensate for the frequency-dependent impedance of a radiofrequency antenna. We are able to deliver peak currents greater than 100 mA over a 300 kHz to 54 MHz frequency span. The radiofrequency current source fits onto a printed circuit board smaller than 4 cm2 and consumes less than 1.3 W of power. It is suitable for use in deployable quantum sensors and nuclear magnetic resonance systems.
Collapse
Affiliation(s)
- D S Barker
- Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park, Maryland 20742, USA
| | - A Restelli
- Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park, Maryland 20742, USA
| | - J A Fedchak
- Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J Scherschligt
- Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - S Eckel
- Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
8
|
Silva PF, Delgado SMT, Jouda M, Mager D, Korvink JG. A multi-purpose, rolled-up, double-helix resonator. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106599. [PMID: 31569053 DOI: 10.1016/j.jmr.2019.106599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Multilayer flexible substrates offer a means to combine high lateral precision and resolution with roll-up processes, allowing layer-based manufacturing to reach into the third dimension. Here we explore this combination to achieve an otherwise hard-to-manufacture resonator geometry: the double-helix. The use of commercial flexPCB technology enabled optimal winding connections and a versatile adjustment to various operation fields, sample volumes and resonance numbers. The sensitivity of the design is shown to greatly benefit from the fabrication method, though optimal electrical connections and several radially-wound windings, and was measured to outperform an equivalent solenoid despite the known geometrical disadvantage.
Collapse
Affiliation(s)
- Pedro F Silva
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, Karlsruhe 76131, Germany
| | - Saraí M Torres Delgado
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, Karlsruhe 76131, Germany
| | - Mazin Jouda
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, Karlsruhe 76131, Germany
| | - Dario Mager
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, Karlsruhe 76131, Germany
| | - Jan G Korvink
- Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, Karlsruhe 76131, Germany.
| |
Collapse
|