1
|
Gengeç Benli Ş, İçer S, Demirci E, Karaman ZF, Ak Z, Acer İ, Sağır GR, Aker E, Sertkaya B. Data-driven exploratory method investigation on the effect of dyslexia education at brain connectivity in Turkish children: a preliminary study. Brain Struct Funct 2024; 229:1697-1712. [PMID: 39003410 PMCID: PMC11374831 DOI: 10.1007/s00429-024-02820-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/11/2024] [Indexed: 07/15/2024]
Abstract
Dyslexia is a specific learning disability that is neurobiological in origin and is characterized by reading and/or spelling problems affecting the development of language-related skills. The aim of this study is to reveal functional markers based on dyslexia by examining the functions of brain regions in resting state and reading tasks and to analyze the effects of special education given during the treatment process of dyslexia. A total of 43 children, aged between 7 and 12, whose native language was Turkish, participated in the study in three groups including those diagnosed with dyslexia for the first time, those receiving special education for dyslexia, and healthy children. Independent component analysis method was employed to analyze functional connectivity variations among three groups both at rest and during the continuous reading task. A whole-brain scanning during task fulfillment and resting states revealed that there were significant differences in the regions including lateral visual, default mode, left frontoparietal, ventral attention, orbitofrontal and lateral motor network. Our results revealed the necessity of adding motor coordination exercises to the training of dyslexic participants and showed that training led to functional connectivity in some brain regions similar to the healthy group. Additionally, our findings confirmed that impulsivity is associated with motor coordination and visuality, and that the dyslexic group has weaknesses in brain connectivity related to these conditions. According to our preliminary results, the differences obtained between children with dyslexia, group of dyslexia with special education and healthy children has revealed the effect of education on brain functions as well as enabling a comprehensive examination of dyslexia.
Collapse
Affiliation(s)
- Şerife Gengeç Benli
- Department of Biomedical Engineering, Engineering Faculty, Erciyes University, Kayseri, Turkey.
| | - Semra İçer
- Department of Biomedical Engineering, Engineering Faculty, Erciyes University, Kayseri, Turkey
| | - Esra Demirci
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Zehra Filiz Karaman
- Department of Pediatric Radiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Zeynep Ak
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Erciyes University, Kayseri, Turkey
| | - İrem Acer
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Erciyes University, Kayseri, Turkey
| | - Gizem Rüveyda Sağır
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Erciyes University, Kayseri, Turkey
| | - Ebru Aker
- Department of Biomedical Engineering, Graduate School of Natural and Applied Sciences, Erciyes University, Kayseri, Turkey
| | - Büşra Sertkaya
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Impaired face recognition is associated with abnormal gray matter volume in the posterior cingulate cortex in congenital amusia. Neuropsychologia 2021; 156:107833. [PMID: 33757844 DOI: 10.1016/j.neuropsychologia.2021.107833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022]
Abstract
Congenital amusia is as a neurodevelopment disorder primarily defined by impairment in pitch discrimination and pitch memory. Interestingly, it has been reported that individuals with congenital amusia also exhibit deficits in face recognition (prosopagnosia). One explanation of such comorbidity is that the neural substrates of pitch recognition and face recognition may be similar. To test this hypothesis, face recognition ability was assessed using the Cambridge Face Memory Test (CFMT) and gray matter volume was determined through voxel-based morphometry (VBM) among participants with and without congenital amusia. As expected, participants with amusia performed worse on the CFMT test and showed reduced gray matter volume (GMV) in the middle temporal gyrus (MTG), the superior temporal gyrus (STG), and the posterior cingulate cortex (PCC) in the right hemisphere, when compared with matched controls. Furthermore, correlation analyses demonstrated that the CFMT score was positively related to MTG, STG, and PCC GMV in all participants, while separate analyses of each group found a positive correlation of CFMT score and PCC GMV in amusics. These findings suggest that face recognition is associated with a widely distributed microstructural network in the human brain and the PCC plays an important role in both pitch recognition and face recognition in amusics. In addition, neurodevelopmental disorders such as congenital amusia and prosopagnosia may share a common neural substrate.
Collapse
|
3
|
Functional connectivity alterations associated with literacy difficulties in early readers. Brain Imaging Behav 2020; 15:2109-2120. [PMID: 33048291 DOI: 10.1007/s11682-020-00406-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
The link between literacy difficulties and brain alterations has been described in depth. Resting-state fMRI (rs-fMRI) has been successfully applied to the study of intrinsic functional connectivity (iFc) both in dyslexia and typically developing children. Most related studies have focused on the stages from late childhood into adulthood using a seed to voxel approach. Our study analyzes iFc in an early childhood sample using the multivariate pattern analysis. This facilitates a hypothesis-free analysis and the possible identification of abnormal functional connectivity patterns at a whole brain level. Thirty-four children with literacy difficulties (LD) (7.1 ± 0.69 yr.) and 30 typically developing children (TD) (7.43 ± 0.52 yr.) were selected. Functional brain connectivity was measured using an rs-fMRI acquisition. The LD group showed a higher iFc between the right middle frontal gyrus (rMFG) and the default mode network (DMN) regions, and a lower iFc between the rMFG and both the bilateral insular cortex and the supramarginal gyrus. These results are interpreted as a DMN on/off routine malfunction in the LD group, which suggests an alteration of the task control network regulating DMN activity. In the LD group, the posterior cingulate cortex also showed a lower iFc with both the middle temporal poles and the fusiform gyrus. This could be interpreted as a failure in the integration of information between brain regions that facilitate reading. Our results show that children with literacy difficulties have an altered functional connectivity in their reading and attentional networks at the beginning of the literacy acquisition. Future studies should evaluate whether or not these alterations could indicate a risk of developing dyslexia.
Collapse
|
4
|
More bilateral, more anterior: Alterations of brain organization in the large-scale structural network in Chinese dyslexia. Neuroimage 2016; 124:63-74. [DOI: 10.1016/j.neuroimage.2015.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 06/18/2015] [Accepted: 09/05/2015] [Indexed: 12/18/2022] Open
|
5
|
Hosseini SMH, Black JM, Soriano T, Bugescu N, Martinez R, Raman MM, Kesler SR, Hoeft F. Topological properties of large-scale structural brain networks in children with familial risk for reading difficulties. Neuroimage 2013; 71:260-74. [PMID: 23333415 DOI: 10.1016/j.neuroimage.2013.01.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/18/2012] [Accepted: 01/11/2013] [Indexed: 01/18/2023] Open
Abstract
Developmental dyslexia is a neurobiological deficit characterized by persistent difficulty in learning to read in children and adults who otherwise possess normal intelligence. Functional and structural connectivity data suggest that developmental dyslexia could be a disconnection syndrome. However, whether abnormalities in connectivity exist in beginning readers at-risk for reading difficulties is unknown. Using graph-theoretical analysis, we investigated differences in global and regional topological properties of structural brain networks in 42 beginning readers with (FH+) and without (FH-) familial risk for reading difficulties. We constructed separate structural correlation networks based on measures of surface area and cortical thickness. Results revealed changes in topological properties in brain regions known to be abnormal in dyslexia (left supramarginal gyrus, left inferior frontal gyrus) in the FH+ group mainly in the network constructed from measures of cortical surface area. We also found alterations in topological properties in regions that are not often advertised as dyslexia but nonetheless play important role in reading (left posterior cingulate, hippocampus, and left precentral gyrus). To our knowledge, this is the first report of altered topological properties of structural correlation networks in children at risk for reading difficulty, and motivates future studies that examine the mechanisms underlying how these brain networks may mediate the influences of family history on reading outcome.
Collapse
Affiliation(s)
- S M Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305-5795, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Erratum to “Positive association between cognitive ability and cortical thickness in a representative US sample of healthy 6 to 18 year-olds”. INTELLIGENCE 2009. [DOI: 10.1016/j.intell.2009.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
S K, Y AD, Rj H, Ij D, Oc L, C L, Ac E. Positive association between cognitive ability and cortical thickness in a representative US sample of healthy 6 to 18 year-olds. INTELLIGENCE 2009; 37:145-155. [PMID: 20161325 DOI: 10.1016/j.intell.2008.09.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neuroimaging studies, using various modalities, have evidenced a link between the general intelligence factor (g) and regional brain function and structure in several multimodal association areas. While in the last few years, developments in computational neuroanatomy have made possible the in vivo quantification of cortical thickness, the relationship between cortical thickness and psychometric intelligence has been little studied. Recently, cortical thickness estimations have been improved by the use of an iterative hemisphere-specific template registration algorithm which provides a better between-subject alignment of brain surfaces. Using this improvement, we aimed to further characterize brain regions where cortical thickness was associated with cognitive ability differences and to test the hypothesis that these regions are mostly located in multimodal association areas. We report associations between a general cognitive ability factor (as an estimate of g) derived from the four subtests of the Wechsler Abbreviated Scale of Intelligence and cortical thickness adjusted for age, gender, and scanner in a large sample of healthy children and adolescents (ages 6-18, N=216) representative of the US population. Significant positive associations were evidenced between the cognitive ability factor and cortical thickness in most multimodal association areas. Results are consistent with a distributed model of intelligence.
Collapse
Affiliation(s)
- Karama S
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | | | | | | | | | | | |
Collapse
|