Hashemzaei M, Baratzadeh N, Sharamian I, Fanoudi S, Sanati M, Rezaei H, Shahraki J, Rezaee R, Belaran M, Bazi A, Tabrizian K. Intrahippocampal co-administration of nicotine and O-acetyl-L-carnitine prevents the H-89-induced spatial learning deficits in Morris water maze.
JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021;
19:691-696. [PMID:
33964190 DOI:
10.1515/jcim-2021-0035]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES
H-89 (a protein kinase AII [PKA II] inhibitor) impairs the spatial memory in the Morris water maze task in rats. In the present study, we aimed to study the protective effects of nicotine and O-acetyl-L-carnitine against H-89-induced spatial memory deficits.
METHODS
Spatial memory impairment was induced by the bilateral intrahippocampal administration of 10 µM H-89 (dissolved in dimethyl sulfoxide, DMSO) to rats. The rats then received bilateral administrations of either nicotine (1 μg/μL, dissolved in saline) or O-acetyl-L-carnitine (100 μM/side, dissolved in deionized water) alone and in combination. Control groups received either saline, deionized water, or DMSO.
RESULTS
The H-89-treated animals showed significant increases in the time and distance travelled to find hidden platforms, and there was also a significant decrease in the time spent in the target quadrant compared to DMSO-treated animals. Nicotine and O-acetyl-L-carnitine had no significant effects on H-89-induced spatial learning impairments alone, but the bilateral intrahippocampal co-administration of nicotine and O-acetyl-L-carnitine prevented H-89-induced spatial learning deficits and increased the time spent in the target quadrant in comparison with H-89-treated animals.
CONCLUSIONS
Our results indicated the potential synergistic effects of nicotine and O-acetyl-L-carnitine in preventing protein kinase AII inhibitor (H-89)-induced spatial learning impairments.
Collapse