1
|
Lapenta OM, Rêgo GG, Boggio PS. Transcranial electrical stimulation for procedural learning and rehabilitation. Neurobiol Learn Mem 2024; 213:107958. [PMID: 38971460 DOI: 10.1016/j.nlm.2024.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Procedural learning is the acquisition of motor and non-motor skills through a gradual process that increases with practice. Impairments in procedural learning have been consistently demonstrated in neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Considering that noninvasive brain stimulation modulates brain activity and boosts neuroplastic mechanisms, we reviewed the effects of coupling transcranial direct current stimulation (tDCS) with training methods for motor and non-motor procedural learning to explore tDCS potential use as a tool for enhancing implicit learning in healthy and clinical populations. The review covers tDCS effects over i. motor procedural learning, from basic to complex activities; ii. non-motor procedural learning; iii. procedural rehabilitation in several clinical populations. We conclude that targeting the primary motor cortex and prefrontal areas seems the most promising for motor and non-motor procedural learning, respectively. For procedural rehabilitation, the use of tDCS is yet at an early stage but some effectiveness has been reported for implicit motor and memory learning. Still, systematic comparisons of stimulation parameters and target areas are recommended for maximising the effectiveness of tDCS and its robustness for procedural rehabilitation.
Collapse
Affiliation(s)
- Olivia Morgan Lapenta
- Psychological Neuroscience Laboratory, Psychology Research Center, School of Psychology, University of Minho - Rua da Universidade, 4710-057 Braga, Portugal.
| | - Gabriel Gaudencio Rêgo
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University - Rua Piauí, 181, 01241-001 São Paulo, Brazil; National Institute of Science and Technology on Social and Affective Neuroscience (INCT-SANI), São Paulo, Brazil
| | - Paulo Sérgio Boggio
- Social and Cognitive Neuroscience Laboratory, Mackenzie Presbyterian University - Rua Piauí, 181, 01241-001 São Paulo, Brazil; National Institute of Science and Technology on Social and Affective Neuroscience (INCT-SANI), São Paulo, Brazil
| |
Collapse
|
2
|
Wang Y, Wang J, Zhang QF, Xiao KW, Wang L, Yu QP, Xie Q, Poo MM, Wen Y. Neural Mechanism Underlying Task-Specific Enhancement of Motor Learning by Concurrent Transcranial Direct Current Stimulation. Neurosci Bull 2023; 39:69-82. [PMID: 35908004 PMCID: PMC9849633 DOI: 10.1007/s12264-022-00901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/10/2022] [Indexed: 01/22/2023] Open
Abstract
The optimal protocol for neuromodulation by transcranial direct current stimulation (tDCS) remains unclear. Using the rotarod paradigm, we found that mouse motor learning was enhanced by anodal tDCS (3.2 mA/cm2) during but not before or after the performance of a task. Dual-task experiments showed that motor learning enhancement was specific to the task accompanied by anodal tDCS. Studies using a mouse model of stroke induced by middle cerebral artery occlusion showed that concurrent anodal tDCS restored motor learning capability in a task-specific manner. Transcranial in vivo Ca2+ imaging further showed that anodal tDCS elevated and cathodal tDCS suppressed neuronal activity in the primary motor cortex (M1). Anodal tDCS specifically promoted the activity of task-related M1 neurons during task performance, suggesting that elevated Hebbian synaptic potentiation in task-activated circuits accounts for the motor learning enhancement. Thus, application of tDCS concurrent with the targeted behavioral dysfunction could be an effective approach to treating brain disorders.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Lingang Laboratory, Shanghai, 201210, China
| | - Jixian Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qing-Fang Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ke-Wei Xiao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing-Ping Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mu-Ming Poo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Lingang Laboratory, Shanghai, 201210, China.
| | - Yunqing Wen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
3
|
D’Urso G, Dini M, Bonato M, Gallucci S, Parazzini M, Maiorana N, Bortolomasi M, Priori A, Ferrucci R. Simultaneous Bilateral Frontal and Bilateral Cerebellar Transcranial Direct Current Stimulation in Treatment-Resistant Depression-Clinical Effects and Electrical Field Modelling of a Novel Electrodes Montage. Biomedicines 2022; 10:1681. [PMID: 35884985 PMCID: PMC9312986 DOI: 10.3390/biomedicines10071681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Depressive disorders are one of the leading causes of disability worldwide. Transcranial direct current stimulation (tDCS) is a safe, simple, non-invasive brain stimulation technique showing considerable effectiveness in improving depressive symptoms. Most studies to date have applied anodal tDCS to the left dorsolateral prefrontal cortex (DLPFC), in line with the hypothesis that depressed patients exhibit relative hypoactivity in the left DLPFC compared to the right. Considering the emerging role of the cerebellum in emotional processes, we aimed to study the effect of combining bilateral cerebellar tDCS with the commonly used bifrontal stimulation in patients with severe depression. This open-label pilot study entailed the simultaneous administration of bilateral cerebellar (anode over the left cerebellum, cathode over the right cerebellum) and bilateral frontal (anode over the left DLPFC, cathode over the right DLPFC) tDCS to patients (N = 12) with treatment-resistant depression. The 21-item Hamilton Depression Rating Scale (HDRS) and Beck's Depression Inventory-II (BDI-II) were selected as outcome measures. Electric fields distribution originating from this novel electrode montage was obtained by a computational method applied to a realistic human head model. We observed a 30% reduction of both clinician-rated and self-reported severity of depressive symptoms after only five days (10 sessions) of treatment. Younger age was associated with greater clinical improvement. Adverse events were similar to those of the conventional electrodes montage. The modelling studies demonstrated that the electric fields generated by each pair of electrodes are primarily distributed in the cortical areas under the electrodes. In conclusion, the cerebellum could represent a promising adjunctive target for tDCS interventions in patients with TRD, particularly for younger patients.
Collapse
Affiliation(s)
- Giordano D’Urso
- Unit of Psychiatry, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Michelangelo Dini
- Aldo Ravelli Research Center, Department of Health Science, University of Milan, 20142 Milan, Italy; (M.D.); (N.M.); (A.P.)
| | - Marta Bonato
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy; (M.B.); (S.G.); (M.P.)
| | - Silvia Gallucci
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy; (M.B.); (S.G.); (M.P.)
- Department of Electronics, Information and Bioengineering (DEIB), Polytechnic University of Milan, 20133 Milan, Italy
| | - Marta Parazzini
- Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), National Research Council of Italy (CNR), 20133 Milan, Italy; (M.B.); (S.G.); (M.P.)
| | - Natale Maiorana
- Aldo Ravelli Research Center, Department of Health Science, University of Milan, 20142 Milan, Italy; (M.D.); (N.M.); (A.P.)
| | | | - Alberto Priori
- Aldo Ravelli Research Center, Department of Health Science, University of Milan, 20142 Milan, Italy; (M.D.); (N.M.); (A.P.)
- ASST-Santi Paolo e Carlo, Neurology Unit, 20142 Milan, Italy
| | - Roberta Ferrucci
- Aldo Ravelli Research Center, Department of Health Science, University of Milan, 20142 Milan, Italy; (M.D.); (N.M.); (A.P.)
- ASST-Santi Paolo e Carlo, Neurology Unit, 20142 Milan, Italy
| |
Collapse
|
4
|
Orrù G, Conversano C, Hitchcott PK, Gemignani A. Motor stroke recovery after tDCS: a systematic review. Rev Neurosci 2021; 31:201-218. [PMID: 31472070 DOI: 10.1515/revneuro-2019-0047] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/04/2019] [Indexed: 02/03/2023]
Abstract
The purpose of the present study was to investigate the effects of transcranial direct current stimulation (tDCS) on motor recovery in adult patients with stroke, taking into account the parameters that could influence the motor recovery responses. The second aim was to identify the best tDCS parameters and recommendations available based on the enhanced motor recovery demonstrated by the analyzed studies. Our systematic review was performed by searching full-text articles published before February 18, 2019 in the PubMed database. Different methods of applying tDCS in association with several complementary therapies were identified. Studies investigating the motor recovery effects of tDCS in adult patients with stroke were considered. Studies investigating different neurologic conditions and psychiatric disorders or those not meeting our methodologic criteria were excluded. The main parameters and outcomes of tDCS treatments are reported. There is not a robust concordance among the study outcomes with regard to the enhancement of motor recovery associated with the clinical application of tDCS. This is mainly due to the heterogeneity of clinical data, tDCS approaches, combined interventions, and outcome measurements. tDCS could be an effective approach to promote adaptive plasticity in the stroke population with significant positive premotor and postmotor rehabilitation effects. Future studies with larger sample sizes and high-quality studies with a better standardization of stimulation protocols are needed to improve the study quality, further corroborate our results, and identify the optimal tDCS protocols.
Collapse
Affiliation(s)
- Graziella Orrù
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Ciro Conversano
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Paul Kenneth Hitchcott
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| |
Collapse
|
5
|
Homan S, Muscat W, Joanlanne A, Marousis N, Cecere G, Hofmann L, Ji E, Neumeier M, Vetter S, Seifritz E, Dierks T, Homan P. Treatment effect variability in brain stimulation across psychiatric disorders: A meta-analysis of variance. Neurosci Biobehav Rev 2021; 124:54-62. [PMID: 33482243 DOI: 10.1016/j.neubiorev.2020.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/26/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Noninvasive brain stimulation methods such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are promising add-on treatments for a number of psychiatric conditions. Yet, some of the initial excitement is wearing off. Randomized controlled trials (RCT) have found inconsistent results. This inconsistency is suspected to be the consequence of variation in treatment effects and solvable by identifying responders in RCTs and individualizing treatment. However, is there enough evidence from RCTs that patients respond differently to treatment? This question can be addressed by comparing the variability in the active stimulation group with the variability in the sham group. We searched MEDLINE/PubMed and included all double-blinded, sham-controlled RCTs and crossover trials that used TMS or tDCS in adults with a unipolar or bipolar depression, bipolar disorder, schizophrenia spectrum disorder, or obsessive compulsive disorder. In accordance with the PRISMA guidelines to ensure data quality and validity, we extracted a measure of variability of the primary outcome. A total of 130 studies with 5748 patients were considered in the analysis. We calculated variance-weighted variability ratios for each comparison of active stimulation vs sham and entered them into a random-effects model. We hypothesized that treatment effect variability in TMS or tDCS would be reflected by increased variability after active compared with sham stimulation, or in other words, a variability ratio greater than one. Across diagnoses, we found only a minimal increase in variability after active stimulation compared with sham that did not reach statistical significance (variability ratio = 1.03; 95% CI, 0.97, 1.08, P = 0.358). In conclusion, this study found little evidence for treatment effect variability in brain stimulation, suggesting that the need for personalized or stratified medicine is still an open question.
Collapse
Affiliation(s)
- Stephanie Homan
- University Hospital of Psychiatry Zurich, Zurich, Switzerland; University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Whitney Muscat
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| | - Andrea Joanlanne
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| | | | - Giacomo Cecere
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Lena Hofmann
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Ellen Ji
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Maria Neumeier
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Stefan Vetter
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Erich Seifritz
- University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Thomas Dierks
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Philipp Homan
- University Hospital of Psychiatry Zurich, Zurich, Switzerland; Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, New York, NY, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA.
| |
Collapse
|
6
|
Grigorescu C, Chalah MA, Lefaucheur JP, Kümpfel T, Padberg F, Ayache SS, Palm U. Effects of Transcranial Direct Current Stimulation on Information Processing Speed, Working Memory, Attention, and Social Cognition in Multiple Sclerosis. Front Neurol 2020; 11:545377. [PMID: 33178103 PMCID: PMC7593675 DOI: 10.3389/fneur.2020.545377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/26/2020] [Indexed: 01/17/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Cognitive impairment occurs in 40-65% of patients and could drastically affect their quality of life. Deficits could involve general cognition (e.g., attention and working memory) as well as social cognition. Transcranial direct current stimulation (tDCS), is a novel brain stimulation technique that has been assessed in the context of several neuropsychiatric symptoms, including those described in the context of MS. However, very rare trials have assessed tDCS effects on general cognition in MS, and none has tackled social cognition. The aim of this work was to assess tDCS effects on general and social cognition in MS. Eleven right-handed patients with MS received two blocks (bifrontal tDCS and sham, 2 mA, 20 min, anode/cathode over left/right prefrontal cortex) of 5 daily stimulations separated by a 3-week washout interval. Working memory and attention were, respectively, measured using N-Back Test (0-Back, 1-Back, and 2-Back) and Symbol Digit Modalities Test (SDMT) at the first and fifth day of each block and 1 week later. Social cognition was evaluated using Faux Pas Test and Eyes Test at baseline and 1 week after each block. Interestingly, accuracy of 1-Back test improved following sham but not active bifrontal tDCS. Therefore, active bifrontal tDCS could have impaired working memory via cathodal stimulation of the right prefrontal cortex. No significant tDCS effects were observed on social cognitive measures and SDMT. Admitting the small sample size and the learning (practice) effect that might arise from the repetitive administration of each task, the current results should be considered as preliminary and further investigations in larger patient samples are needed to gain a closer understanding of tDCS effects on cognition in MS.
Collapse
Affiliation(s)
- Christina Grigorescu
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Munich, Germany
| | - Moussa A Chalah
- EA 4391, Excitabilité nerveuse et thérapeutique, Université Paris-Est-Créteil, Créteil, France.,Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Jean-Pascal Lefaucheur
- EA 4391, Excitabilité nerveuse et thérapeutique, Université Paris-Est-Créteil, Créteil, France.,Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Tania Kümpfel
- Institute for Clinical Neuroimmunology, Klinikum der Universität München, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Munich, Germany
| | - Samar S Ayache
- EA 4391, Excitabilité nerveuse et thérapeutique, Université Paris-Est-Créteil, Créteil, France.,Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Munich, Germany.,Medical Park Chiemseeblick, Bernau, Germany
| |
Collapse
|
7
|
Borrione L, Bellini H, Razza LB, Avila AG, Baeken C, Brem AK, Busatto G, Carvalho AF, Chekroud A, Daskalakis ZJ, Deng ZD, Downar J, Gattaz W, Loo C, Lotufo PA, Martin MDGM, McClintock SM, O'Shea J, Padberg F, Passos IC, Salum GA, Vanderhasselt MA, Fraguas R, Benseñor I, Valiengo L, Brunoni AR. Precision non-implantable neuromodulation therapies: a perspective for the depressed brain. ACTA ACUST UNITED AC 2020; 42:403-419. [PMID: 32187319 PMCID: PMC7430385 DOI: 10.1590/1516-4446-2019-0741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Current first-line treatments for major depressive disorder (MDD) include pharmacotherapy and cognitive-behavioral therapy. However, one-third of depressed patients do not achieve remission after multiple medication trials, and psychotherapy can be costly and time-consuming. Although non-implantable neuromodulation (NIN) techniques such as transcranial magnetic stimulation, transcranial direct current stimulation, electroconvulsive therapy, and magnetic seizure therapy are gaining momentum for treating MDD, the efficacy of non-convulsive techniques is still modest, whereas use of convulsive modalities is limited by their cognitive side effects. In this context, we propose that NIN techniques could benefit from a precision-oriented approach. In this review, we discuss the challenges and opportunities in implementing such a framework, focusing on enhancing NIN effects via a combination of individualized cognitive interventions, using closed-loop approaches, identifying multimodal biomarkers, using computer electric field modeling to guide targeting and quantify dosage, and using machine learning algorithms to integrate data collected at multiple biological levels and identify clinical responders. Though promising, this framework is currently limited, as previous studies have employed small samples and did not sufficiently explore pathophysiological mechanisms associated with NIN response and side effects. Moreover, cost-effectiveness analyses have not been performed. Nevertheless, further advancements in clinical trials of NIN could shift the field toward a more “precision-oriented” practice.
Collapse
Affiliation(s)
- Lucas Borrione
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Helena Bellini
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Lais Boralli Razza
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Ana G Avila
- Centro de Neuropsicologia e Intervenção Cognitivo-Comportamental, Faculdade de Psicologia e Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Chris Baeken
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Department of Psychiatry, University Hospital (UZ Brussel), Brussels, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anna-Katharine Brem
- Max Planck Institute of Psychiatry, Munich, Germany.,Division of Interventional Cognitive Neurology, Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Geraldo Busatto
- Laboratório de Neuroimagem em Psiquiatria (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Adam Chekroud
- Spring Health, New York, NY, USA.,Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutic & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.,Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Jonathan Downar
- Department of Psychiatry and Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Centre for Mental Health and Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Wagner Gattaz
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas,
Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Colleen Loo
- School of Psychiatry and Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Paulo A Lotufo
- Estudo Longitudinal de Saúde do Adulto (ELSA), Centro de Pesquisa Clínica e Epidemiológica, Hospital Universitário, USP, São Paulo, SP, Brazil
| | - Maria da Graça M Martin
- Laboratório de Ressonância Magnética em Neurorradiologia (LIM-44) and Instituto de Radiologia, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Shawn M McClintock
- Neurocognitive Research Laboratory, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ives C Passos
- Laboratório de Psiquiatria Molecular e Programa de
Transtorno Bipolar, Hospital de Clínicas de Porto Alegre (HCPA), Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Giovanni A Salum
- Departamento de Psiquiatria, Seção de Afeto Negativo e Processos Sociais (SANPS), HCPA, UFRGS, Porto Alegre, RS, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.,Department of Experimental Clinical and Health Psychology, Psychopathology and Affective Neuroscience Lab, Ghent University, Ghent, Belgium
| | - Renerio Fraguas
- Laboratório de Neuroimagem em Psiquiatria (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Hospital Universitário, USP, São Paulo, SP, Brazil
| | - Isabela Benseñor
- Estudo Longitudinal de Saúde do Adulto (ELSA), Centro de Pesquisa Clínica e Epidemiológica, Hospital Universitário, USP, São Paulo, SP, Brazil
| | - Leandro Valiengo
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Andre R Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas,
Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Hospital Universitário, USP, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Xie H, Chen Y, Lin Y, Hu X, Zhang D. Can’t forget: disruption of the right prefrontal cortex impairs voluntary forgetting in a recognition test. Memory 2019; 28:60-69. [DOI: 10.1080/09658211.2019.1681456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hui Xie
- College of Psychology, Shenzhen University, Shenzhen, People’s Republic of China
| | - Yu Chen
- College of Psychology, Shenzhen University, Shenzhen, People’s Republic of China
| | - Yiqin Lin
- College of Psychology, Shenzhen University, Shenzhen, People’s Republic of China
| | - Xiaoqing Hu
- Department of Psychology, The University of Hong Kong, Hong Kong, People’s Republic of China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- HKU, Shenzhen Institute of Research and Innovation, Shenzhen, People’s Republic of China
| | - Dandan Zhang
- College of Psychology, Shenzhen University, Shenzhen, People’s Republic of China
- Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University Shenzhen, People’s Republic of China
| |
Collapse
|
9
|
Bihemispheric anodal transcranial direct-current stimulation over temporal cortex enhances auditory selective spatial attention. Exp Brain Res 2019; 237:1539-1549. [PMID: 30927041 DOI: 10.1007/s00221-019-05525-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
The capacity to selectively focus on a particular speaker of interest in a complex acoustic environment with multiple persons speaking simultaneously-a so-called "cocktail-party" situation-is of decisive importance for human verbal communication. Here, the efficacy of single-dose transcranial direct-current stimulation (tDCS) in improving this ability was tested in young healthy adults (n = 24), using a spatial task that required the localization of a target word in a simulated "cocktail-party" situation. In a sham-controlled crossover design, offline bihemispheric double-monopolar anodal tDCS was applied for 30 min at 1 mA over auditory regions of temporal lobe, and the participant's performance was assessed prior to tDCS, immediately after tDCS, and 1 h after tDCS. A significant increase in the amount of correct localizations by on average 3.7 percentage points (d = 1.04) was found after active, relative to sham, tDCS, with only insignificant reduction of the effect within 1 h after tDCS offset. Thus, the method of bihemispheric tDCS could be a promising tool for enhancement of human auditory attentional functions that are relevant for spatial orientation and communication in everyday life.
Collapse
|
10
|
Ironside M, Perlo S. Transcranial Direct Current Stimulation for the Treatment of Depression: a Review of the Candidate Mechanisms of Action. Curr Behav Neurosci Rep 2018. [DOI: 10.1007/s40473-018-0138-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
da Silva FTG, Browne RAV, Pinto CB, Saleh Velez FG, do Egito EST, do Rêgo JTP, da Silva MR, Dantas PMS, Fregni F. Transcranial direct current stimulation in individuals with spinal cord injury: Assessment of autonomic nervous system activity. Restor Neurol Neurosci 2017; 35:159-169. [PMID: 28282844 DOI: 10.3233/rnn-160685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND We hypothesized in this study that transcranial direct current stimulation (tDCS) of primary motor cortex could exert top-down modulation over subcortical systems associated with autonomic control and thus be useful to revert some of the dysfunctional changes found in the autonomic nervous system (ANS) of subjects with spinal cord injuries (SCI). OBJECTIVE To explore the acute effect of tDCS on ANS indexed by Heart Rate Variability (HRV) in individuals with SCI and analyze whether this effect depends on the gender, degree, level and time of injury. METHODS In this randomized, placebo-controlled, crossover, double-blinded study, 18 adults with SCI (32.9±7.9 years old) were included; the intervention consisted of a single 12-minute session of active tDCS (anodal, 2 mA) and a control session of sham tDCS applied over Cz (bihemispheric motor cortex). HRV was calculated using spectral analysis. Low-frequency (LF), high-frequency (HF), and LF/HF ratio variables were evaluated before, during, and post tDCS. RESULTS A two-way repeated measures ANOVA showed that after active (anodal) stimulation, LF/HF ratio was significantly increased (P = 0.013). There was a trend for an interaction between time and stimulation for both LF and HF (P = 0.052). Paired exploratory t-tests reported effects on the difference of time [post-pre] between stimulation conditions for LF (P = 0.052), HF (P = 0.052) and LF/HF (P = 0.003). CONCLUSION Anodal tDCS of the motor cortex modulated ANS activity in individuals with SCI independent of gender, type and time of lesion. These changes were in the direction of normalization of ANS parameters, thus confirming our initial hypothesis that an enhancement of cortical excitability by tDCS could at least partially restore some of the dysfunctional activity in the ANS system of subjects with SCI.
Collapse
Affiliation(s)
- Fabiana Tenório Gomes da Silva
- Laboratory of Neuromodulation, Center of Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.,Psychology institute, Department of Neurosciences and behavior, University of São Paulo (USP), São Paulo, Brazil.,Department of Physical Education, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Rodrigo Alberto Vieira Browne
- Department of Physical Education, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Camila Bonin Pinto
- Laboratory of Neuromodulation, Center of Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Faddi Ghassan Saleh Velez
- Laboratory of Neuromodulation, Center of Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Eryvaldo Sócrates Tabosa do Egito
- Department of Pharmacy, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Jeferson Tafarel Pereira do Rêgo
- Department of Physical Education, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Marília Rodrigues da Silva
- Department of Physical Education, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Paulo Moreira Silva Dantas
- Department of Physical Education, Health Sciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation, Center of Clinical Research Learning, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
|
13
|
tDCS for the treatment of depression: a comprehensive review. Eur Arch Psychiatry Clin Neurosci 2016; 266:681-694. [PMID: 26842422 DOI: 10.1007/s00406-016-0674-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/18/2016] [Indexed: 12/24/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been investigated for the treatment of major depressive disorders in recent years. Here, we review the implications of current research for the clinical use of tDCS in the treatment of major depressive disorder. Meta-analyses, randomized, placebo-controlled clinical trials, open-label trials, case reports and review articles were identified through a systematic search of the literature database of the National Institutes of Health (USA). Available articles were evaluated with regard to their clinical relevance. Results of tDCS efficacy are inconsistent due to the small sample sizes, the heterogeneous patient samples and the partially high treatment resistance in some studies. Overall, tDCS has very low side effects. Meta-analyses suggest some efficacy of tDCS in the treatment of acute depressive disorder with moderate effect size, and low efficacy in treatment-resistant depression. A general statement about the efficacy of tDCS as a therapeutic tool in major depression seems to be premature. tDCS is considered as a safe therapeutic option and is associated with only minor side effects. The effectiveness of tDCS decreases with resistance to treatment. Psychotropic drugs may attenuate or amplify its effects. The use of 2 mA current strength over 20 min per day over a short time span can be considered as safe.
Collapse
|
14
|
Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 2016; 128:56-92. [PMID: 27866120 DOI: 10.1016/j.clinph.2016.10.087] [Citation(s) in RCA: 1062] [Impact Index Per Article: 132.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/19/2022]
Abstract
A group of European experts was commissioned by the European Chapter of the International Federation of Clinical Neurophysiology to gather knowledge about the state of the art of the therapeutic use of transcranial direct current stimulation (tDCS) from studies published up until September 2016, regarding pain, Parkinson's disease, other movement disorders, motor stroke, poststroke aphasia, multiple sclerosis, epilepsy, consciousness disorders, Alzheimer's disease, tinnitus, depression, schizophrenia, and craving/addiction. The evidence-based analysis included only studies based on repeated tDCS sessions with sham tDCS control procedure; 25 patients or more having received active treatment was required for Class I, while a lower number of 10-24 patients was accepted for Class II studies. Current evidence does not allow making any recommendation of Level A (definite efficacy) for any indication. Level B recommendation (probable efficacy) is proposed for: (i) anodal tDCS of the left primary motor cortex (M1) (with right orbitofrontal cathode) in fibromyalgia; (ii) anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) (with right orbitofrontal cathode) in major depressive episode without drug resistance; (iii) anodal tDCS of the right DLPFC (with left DLPFC cathode) in addiction/craving. Level C recommendation (possible efficacy) is proposed for anodal tDCS of the left M1 (or contralateral to pain side, with right orbitofrontal cathode) in chronic lower limb neuropathic pain secondary to spinal cord lesion. Conversely, Level B recommendation (probable inefficacy) is conferred on the absence of clinical effects of: (i) anodal tDCS of the left temporal cortex (with right orbitofrontal cathode) in tinnitus; (ii) anodal tDCS of the left DLPFC (with right orbitofrontal cathode) in drug-resistant major depressive episode. It remains to be clarified whether the probable or possible therapeutic effects of tDCS are clinically meaningful and how to optimally perform tDCS in a therapeutic setting. In addition, the easy management and low cost of tDCS devices allow at home use by the patient, but this might raise ethical and legal concerns with regard to potential misuse or overuse. We must be careful to avoid inappropriate applications of this technique by ensuring rigorous training of the professionals and education of the patients.
Collapse
|
15
|
Lewald J. Modulation of human auditory spatial scene analysis by transcranial direct current stimulation. Neuropsychologia 2016; 84:282-93. [PMID: 26825012 DOI: 10.1016/j.neuropsychologia.2016.01.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 01/24/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
Localizing and selectively attending to the source of a sound of interest in a complex auditory environment is an important capacity of the human auditory system. The underlying neural mechanisms have, however, still not been clarified in detail. This issue was addressed by using bilateral bipolar-balanced transcranial direct current stimulation (tDCS) in combination with a task demanding free-field sound localization in the presence of multiple sound sources, thus providing a realistic simulation of the so-called "cocktail-party" situation. With left-anode/right-cathode, but not with right-anode/left-cathode, montage of bilateral electrodes, tDCS over superior temporal gyrus, including planum temporale and auditory cortices, was found to improve the accuracy of target localization in left hemispace. No effects were found for tDCS over inferior parietal lobule or with off-target active stimulation over somatosensory-motor cortex that was used to control for non-specific effects. Also, the absolute error in localization remained unaffected by tDCS, thus suggesting that general response precision was not modulated by brain polarization. This finding can be explained in the framework of a model assuming that brain polarization modulated the suppression of irrelevant sound sources, thus resulting in more effective spatial separation of the target from the interfering sound in the complex auditory scene.
Collapse
Affiliation(s)
- Jörg Lewald
- Auditory Cognitive Neuroscience Laboratory, Department of Cognitive Psychology, Ruhr University Bochum, D-44780 Bochum, Germany; Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, D-44139 Dortmund, Germany.
| |
Collapse
|
16
|
Shin YI, Foerster Á, Nitsche MA. Reprint of: Transcranial direct current stimulation (tDCS) – Application in neuropsychology. Neuropsychologia 2015; 74:74-95. [DOI: 10.1016/j.neuropsychologia.2015.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 01/07/2023]
|
17
|
Charvet LE, Kasschau M, Datta A, Knotkova H, Stevens MC, Alonzo A, Loo C, Krull KR, Bikson M. Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: guidelines for technology and protocols. Front Syst Neurosci 2015; 9:26. [PMID: 25852494 PMCID: PMC4362220 DOI: 10.3389/fnsys.2015.00026] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/13/2015] [Indexed: 11/13/2022] Open
Abstract
The effect of transcranial direct current stimulation (tDCS) is cumulative. Treatment protocols typically require multiple consecutive sessions spanning weeks or months. However, traveling to clinic for a tDCS session can present an obstacle to subjects and their caregivers. With modified devices and headgear, tDCS treatment can be administered remotely under clinical supervision, potentially enhancing recruitment, throughput, and convenience. Here we propose standards and protocols for clinical trials utilizing remotely-supervised tDCS with the goal of providing safe, reproducible and well-tolerated stimulation therapy outside of the clinic. The recommendations include: (1) training of staff in tDCS treatment and supervision; (2) assessment of the user’s capability to participate in tDCS remotely; (3) ongoing training procedures and materials including assessments of the user and/or caregiver; (4) simple and fail-safe electrode preparation techniques and tDCS headgear; (5) strict dose control for each session; (6) ongoing monitoring to quantify compliance (device preparation, electrode saturation/placement, stimulation protocol), with corresponding corrective steps as required; (7) monitoring for treatment-emergent adverse effects; (8) guidelines for discontinuation of a session and/or study participation including emergency failsafe procedures tailored to the treatment population’s level of need. These guidelines are intended to provide a minimal level of methodological rigor for clinical trials seeking to apply tDCS outside a specialized treatment center. We outline indication-specific applications (Attention Deficit Hyperactivity Disorder, Depression, Multiple Sclerosis, Palliative Care) following these recommendations that support a standardized framework for evaluating the tolerability and reproducibility of remote-supervised tDCS that, once established, will allow for translation of tDCS clinical trials to a greater size and range of patient populations.
Collapse
Affiliation(s)
- Leigh E Charvet
- Department of Neurology, Stony Brook Medicine Stony Brook, NY, USA
| | | | | | | | - Michael C Stevens
- Olin Neuropsychiatry Research Center, Yale University School of Medicine New Haven, CT, USA
| | - Angelo Alonzo
- School of Psychiatry, University of New South Wales, Black Dog Institute Randwick, Australia
| | - Colleen Loo
- School of Psychiatry, University of New South Wales, Black Dog Institute Randwick, Australia
| | - Kevin R Krull
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital Memphis, Tennessee, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY NY, USA
| |
Collapse
|
18
|
Transcranial direct current stimulation (tDCS) – Application in neuropsychology. Neuropsychologia 2015; 69:154-75. [DOI: 10.1016/j.neuropsychologia.2015.02.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 12/21/2022]
|
19
|
Nasseri P, Nitsche MA, Ekhtiari H. A framework for categorizing electrode montages in transcranial direct current stimulation. Front Hum Neurosci 2015; 9:54. [PMID: 25705188 PMCID: PMC4319395 DOI: 10.3389/fnhum.2015.00054] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/20/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Padideh Nasseri
- Neurocognitive Laboratory, Iranian National Center for Addiction Studies, Tehran University of Medical Sciences Tehran, Iran ; Translational Neuroscience Program, Iranian Institute for Cognitive Sciences Studies (ICSS) Tehran, Iran
| | - Michael A Nitsche
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-Universität Göttingen Göttingen, Germany
| | - Hamed Ekhtiari
- Neurocognitive Laboratory, Iranian National Center for Addiction Studies, Tehran University of Medical Sciences Tehran, Iran ; Translational Neuroscience Program, Iranian Institute for Cognitive Sciences Studies (ICSS) Tehran, Iran
| |
Collapse
|
20
|
Bennabi D, Pedron S, Haffen E, Monnin J, Peterschmitt Y, Van Waes V. Transcranial direct current stimulation for memory enhancement: from clinical research to animal models. Front Syst Neurosci 2014; 8:159. [PMID: 25237299 PMCID: PMC4154388 DOI: 10.3389/fnsys.2014.00159] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 08/13/2014] [Indexed: 01/07/2023] Open
Abstract
There is a growing demand for new brain-enhancing technologies to improve mental performance, both for patients with cognitive disorders and for healthy individuals. Transcranial direct current stimulation (tDCS) is a non-invasive, painless, and easy to use neuromodulatory technique that can improve performance on a variety of cognitive tasks in humans despite its exact mode of action remains unclear. We have conducted a mini-review of the literature to first briefly summarize the growing amount of data from clinical trials assessing the efficacy of tDCS, focusing exclusively on learning and memory performances in healthy human subjects and in patients with depression, schizophrenia, and other neurological disorders. We then discuss these findings in the context of the strikingly few studies resulting from animal research. Finally, we highlight future directions and limitations in this field and emphasize the need to develop translational studies to better understand how tDCS improves memory, a necessary condition before it can be used as a therapeutic tool.
Collapse
Affiliation(s)
- Djamila Bennabi
- EA 481 Laboratory of Integrative and Clinical Neuroscience, University of Franche-Comté/SFR FED 4234 Besançon, France
| | - Solène Pedron
- EA 481 Laboratory of Integrative and Clinical Neuroscience, University of Franche-Comté/SFR FED 4234 Besançon, France
| | - Emmanuel Haffen
- EA 481 Laboratory of Integrative and Clinical Neuroscience, University of Franche-Comté/SFR FED 4234 Besançon, France ; INSERM CIC-IT 808 Clinical Investigation Centre for Innovative Technology, University Hospital of Besançon Besançon, France
| | - Julie Monnin
- EA 481 Laboratory of Integrative and Clinical Neuroscience, University of Franche-Comté/SFR FED 4234 Besançon, France ; INSERM CIC-IT 808 Clinical Investigation Centre for Innovative Technology, University Hospital of Besançon Besançon, France
| | - Yvan Peterschmitt
- EA 481 Laboratory of Integrative and Clinical Neuroscience, University of Franche-Comté/SFR FED 4234 Besançon, France
| | - Vincent Van Waes
- EA 481 Laboratory of Integrative and Clinical Neuroscience, University of Franche-Comté/SFR FED 4234 Besançon, France
| |
Collapse
|
21
|
Mondino M, Bennabi D, Poulet E, Galvao F, Brunelin J, Haffen E. Can transcranial direct current stimulation (tDCS) alleviate symptoms and improve cognition in psychiatric disorders? World J Biol Psychiatry 2014; 15:261-75. [PMID: 24447054 DOI: 10.3109/15622975.2013.876514] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Since the discovery of psychopharmacological treatments in the early 1950s, followed by the development of second-generation antidepressants and antipsychotics, biological psychiatry has not achieved much progress. Recent technological advances in the field of non-invasive brain stimulation open new perspectives in the treatment of psychiatric disorders. Amongst them, transcranial direct current stimulation (tDCS) modulates cortical excitability and induces long-lasting effects. Here, we aimed at evaluating whether tDCS has potential to be developed as an innovative treatment in psychiatry. METHODS We conducted a systematic review of the current state of development and application of tDCS in psychiatric disorders, exploring clinical and cognitive effects, especially in major depressive disorder (MDD), schizophrenia and substance use disorder. RESULTS Systematic literature search yielded 40 publications: 22 in MDD, nine in schizophrenia, seven in substance use disorder, one in obsessive-compulsive disorder and one in mania. Our findings indicated beneficial clinical effects of tDCS for MDD and a promising literature in schizophrenia and substance use disorder. CONCLUSIONS Despite methodological differences, the data published to date are promising and supports the use of tDCS as a treatment for psychiatric disorders. However, its place regarding other treatments still has to be determined before becoming a routine clinical treatment.
Collapse
Affiliation(s)
- Marine Mondino
- Centre Hospitalier le Vinatier, Université Claude Bernard Lyon I , Bron , France
| | | | | | | | | | | |
Collapse
|