1
|
Zapała B, Stefura T, Piwowar M, Czekalska S, Zawada M, Hadasik M, Solnica B, Rudzińska-Bar M. The Role of Single Nucleotide Polymorphisms of Monoamine Oxidase B, Dopamine D2 Receptor, and DOPA Decarboxylase Receptors Among Patients Treated for Parkinson's Disease. J Mol Neurosci 2022; 72:812-819. [PMID: 35044623 PMCID: PMC8986734 DOI: 10.1007/s12031-022-01966-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/03/2022] [Indexed: 01/01/2023]
Abstract
This study aimed to investigate the association between selected variants of genes related to dopamine metabolism pathways and the risk of and progression of Parkinson’s disease (PD). This prospective cohort study was conducted in one academic teaching hospital. The study was conducted on 126 patients diagnosed with idiopathic Parkinson’s disease. Blood samples were collected to conduct a genotyping of MAOB, DRD1, DRD2, and DDC genes. Genotype and allele frequencies of MAOB (rs1799836) variants were not associated with the course of PD. Genotype and allele frequencies of DRD2 (rs2283265) variants were associated with risk of dementia (p = 0.001) and resulted in parts II and III of the UPDRS scale (p = 0.001). Genotype and allele frequencies of DRD2 (rs1076560) variants were associated with risk of dementia (p = 0.001) and resulted in parts II and III of the UPDRS scale (p = 0.001). Genotype and allele frequencies of DDC (rs921451) variants were not associated with the course of PD.
Collapse
Affiliation(s)
- Barbara Zapała
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland.
| | | | - Monika Piwowar
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland
| | - Sylwia Czekalska
- Department of Hematology Diagnostics and Genetics, The University Hospital, Krakow, Poland
| | - Magdalena Zawada
- Department of Hematology Diagnostics and Genetics, The University Hospital, Krakow, Poland
| | - Maria Hadasik
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Bogdan Solnica
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | | |
Collapse
|
2
|
Lan J, Liu Z, Liao C, Merkler DJ, Han Q, Li J. A Study for Therapeutic Treatment against Parkinson's Disease via Chou's 5-steps Rule. Curr Top Med Chem 2019; 19:2318-2333. [PMID: 31629395 DOI: 10.2174/1568026619666191019111528] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/05/2019] [Accepted: 08/22/2019] [Indexed: 11/22/2022]
Abstract
The enzyme L-DOPA decarboxylase (DDC), also called aromatic-L-amino-acid decarboxylase, catalyzes the biosynthesis of dopamine, serotonin, and trace amines. Its deficiency or perturbations in expression result in severe motor dysfunction or a range of neurodegenerative and psychiatric disorders. A DDC substrate, L-DOPA, combined with an inhibitor of the enzyme is still the most effective treatment for symptoms of Parkinson's disease. In this review, we provide an update regarding the structures, functions, and inhibitors of DDC, particularly with regards to the treatment of Parkinson's disease. This information will provide insight into the pharmacological treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Jianqiang Lan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Zhongqiang Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Chenghong Liao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, United States
| | - Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
3
|
Common Variation in the DOPA Decarboxylase (DDC) Gene and Human Striatal DDC Activity In Vivo. Neuropsychopharmacology 2016; 41:2303-8. [PMID: 26924680 PMCID: PMC4946061 DOI: 10.1038/npp.2016.31] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 12/24/2022]
Abstract
The synthesis of multiple amine neurotransmitters, such as dopamine, norepinephrine, serotonin, and trace amines, relies in part on DOPA decarboxylase (DDC, AADC), an enzyme that is required for normative neural operations. Because rare, loss-of-function mutations in the DDC gene result in severe enzymatic deficiency and devastating autonomic, motor, and cognitive impairment, DDC common genetic polymorphisms have been proposed as a source of more moderate, but clinically important, alterations in DDC function that may contribute to risk, course, or treatment response in complex, heritable neuropsychiatric illnesses. However, a direct link between common genetic variation in DDC and DDC activity in the living human brain has never been established. We therefore tested for this association by conducting extensive genotyping across the DDC gene in a large cohort of 120 healthy individuals, for whom DDC activity was then quantified with [(18)F]-FDOPA positron emission tomography (PET). The specific uptake constant, Ki, a measure of DDC activity, was estimated for striatal regions of interest and found to be predicted by one of five tested haplotypes, particularly in the ventral striatum. These data provide evidence for cis-acting, functional common polymorphisms in the DDC gene and support future work to determine whether such variation might meaningfully contribute to DDC-mediated neural processes relevant to neuropsychiatric illness and treatment.
Collapse
|
4
|
Martelle SE, Raffield LM, Palmer ND, Cox AJ, Freedman BI, Hugenschmidt CE, Williamson JD, Bowden DW. Dopamine pathway gene variants may modulate cognitive performance in the DHS - Mind Study. Brain Behav 2016; 6:e00446. [PMID: 27066308 PMCID: PMC4797918 DOI: 10.1002/brb3.446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is an established association between type 2 diabetes and accelerated cognitive decline. The exact mechanism linking type 2 diabetes and reduced cognitive function is less clear. The monoamine system, which is extensively involved in cognition, can be altered by type 2 diabetes status. Thus, this study hypothesized that sequence variants in genes linked to dopamine metabolism and associated pathways are associated with cognitive function as assessed by the Digit Symbol Substitution Task, the Modified Mini-Mental State Examination, the Stroop Task, the Rey Auditory-Verbal Learning Task, and the Controlled Oral Word Association Task for Phonemic and Semantic Fluency in the Diabetes Heart Study, a type 2 diabetes-enriched familial cohort (n = 893). METHODS To determine the effects of candidate variants on cognitive performance, genetic association analyses were performed on the well-documented variable number tandem repeat located in the 3' untranslated region of the dopamine transporter, as well as on single-nucleotide polymorphisms covering genes in the dopaminergic pathway, the insulin signaling pathway, and the convergence of both. Next, polymorphisms in loci of interest with strong evidence for involvement in dopamine processing were extracted from genetic datasets available in a subset of the cohort (n = 572) derived from Affymetrix(®) Genome-Wide Human SNP Array 5.0 and 1000 Genomes imputation from this array. RESULTS The candidate gene analysis revealed one variant from the DOPA decarboxylase gene, rs10499695, to be associated with poorer performance on a subset of Rey Auditory-Verbal Learning Task measuring retroactive interference (P = 0.001, β = -0.45). Secondary analysis of genome-wide and imputed data uncovered another DOPA decarboxylase variant, rs62445903, also associated with retroactive interference (P = 7.21 × 10(-7), β = 0.3). These data suggest a role for dopaminergic genes, specifically a gene involved in regulation of dopamine synthesis, in cognitive performance in type 2 diabetes.
Collapse
Affiliation(s)
- Susan E Martelle
- Department of Physiology and Pharmacology Wake Forest School of Medicine Winston - Salem North Carolina; Center for Genomics and Personalized Medicine Research Wake Forest School of Medicine Winston - Salem North Carolina
| | - Laura M Raffield
- Center for Genomics and Personalized Medicine Research Wake Forest School of Medicine Winston - Salem North Carolina
| | - Nichole D Palmer
- Center for Genomics and Personalized Medicine Research Wake Forest School of Medicine Winston - Salem North Carolina
| | - Amanda J Cox
- Molecular Basis of Disease Griffith University Southport Brisbane Queensland Australia
| | - Barry I Freedman
- Department of Internal Medicine, Nephrology Wake Forest School of Medicine Winston - Salem North Carolina
| | - Christina E Hugenschmidt
- Department of Internal Medicine, Gerontology and Geriatric Medicine Wake Forest School of Medicine Winston - Salem North Carolina
| | - Jeff D Williamson
- Department of Internal Medicine, Gerontology and Geriatric Medicine Wake Forest School of Medicine Winston - Salem North Carolina
| | - Don W Bowden
- Center for Genomics and Personalized Medicine Research Wake Forest School of Medicine Winston - Salem North Carolina
| |
Collapse
|
5
|
Recoquillay J, Pitel F, Arnould C, Leroux S, Dehais P, Moréno C, Calandreau L, Bertin A, Gourichon D, Bouchez O, Vignal A, Fariello MI, Minvielle F, Beaumont C, Leterrier C, Le Bihan-Duval E. A medium density genetic map and QTL for behavioral and production traits in Japanese quail. BMC Genomics 2015; 16:10. [PMID: 25609057 PMCID: PMC4307178 DOI: 10.1186/s12864-014-1210-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/30/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Behavioral traits such as sociability, emotional reactivity and aggressiveness are major factors in animal adaptation to breeding conditions. In order to investigate the genetic control of these traits as well as their relationships with production traits, a study was undertaken on a large second generation cross (F2) between two lines of Japanese Quail divergently selected on their social reinstatement behavior. All the birds were measured for several social behaviors (social reinstatement, response to social isolation, sexual motivation, aggression), behaviors measuring the emotional reactivity of the birds (reaction to an unknown object, tonic immobility reaction), and production traits (body weight and egg production). RESULTS We report the results of the first genome-wide QTL detection based on a medium density SNP panel obtained from whole genome sequencing of a pool of individuals from each divergent line. A genetic map was constructed using 2145 markers among which 1479 could be positioned on 28 different linkage groups. The sex-averaged linkage map spanned a total of 3057 cM with an average marker spacing of 2.1 cM. With the exception of a few regions, the marker order was the same in Japanese Quail and the chicken, which confirmed a well conserved synteny between the two species. The linkage analyses performed using QTLMAP software revealed a total of 45 QTLs related either to behavioral (23) or production (22) traits. The most numerous QTLs (15) concerned social motivation traits. Interestingly, our results pinpointed putative pleiotropic regions which controlled emotional reactivity and body-weight of birds (on CJA5 and CJA8) or their social motivation and the onset of egg laying (on CJA19). CONCLUSION This study identified several QTL regions for social and emotional behaviors in the Quail. Further research will be needed to refine the QTL and confirm or refute the role of candidate genes, which were suggested by bioinformatics analysis. It can be hoped that the identification of genes and polymorphisms related to behavioral traits in the quail will have further applications for other poultry species (especially the chicken) and will contribute to solving animal welfare issues in poultry production.
Collapse
Affiliation(s)
| | - Frédérique Pitel
- UMR INRA/Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENSAT / Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENVT Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
| | - Cécile Arnould
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.
- CNRS, UMR7247, F-37380, Nouzilly, France.
- Université François Rabelais de Tours, F-37000, Tours, France.
- IFCE, F-37380, Nouzilly, France.
| | - Sophie Leroux
- UMR INRA/Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENSAT / Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENVT Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
| | - Patrice Dehais
- UMR INRA/Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENSAT / Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENVT Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INRA, Sigenae UR875 Biométrie et Intelligence Artificielle, F-31326, Castanet-Tolosan, France.
| | - Carole Moréno
- UMR INRA/Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENSAT / Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENVT Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
| | - Ludovic Calandreau
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.
- CNRS, UMR7247, F-37380, Nouzilly, France.
- Université François Rabelais de Tours, F-37000, Tours, France.
- IFCE, F-37380, Nouzilly, France.
| | - Aline Bertin
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.
- CNRS, UMR7247, F-37380, Nouzilly, France.
- Université François Rabelais de Tours, F-37000, Tours, France.
- IFCE, F-37380, Nouzilly, France.
| | - David Gourichon
- UE1295 Pôle d'Expérimentation Avicole de Tours, F-37380, Nouzilly, France.
| | - Olivier Bouchez
- UMR INRA/Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENSAT / Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENVT Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INRA, GeT-PlaGe Genotoul, F-31326, Castanet-Tolosan, France.
| | - Alain Vignal
- UMR INRA/Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENSAT / Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENVT Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
| | - Maria Ines Fariello
- UMR INRA/Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENSAT / Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- INPT ENVT Génétique Physiologie et Systèmes d'Elevage, INRA, F-31326, Castanet-Tolosan, France.
- Institut Pasteur, Montevideo, Uruguay.
| | - Francis Minvielle
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, F-78530, Jouy-en-Josas, France.
| | | | - Christine Leterrier
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.
- CNRS, UMR7247, F-37380, Nouzilly, France.
- Université François Rabelais de Tours, F-37000, Tours, France.
- IFCE, F-37380, Nouzilly, France.
| | | |
Collapse
|
6
|
Zhu B, Chen C, Loftus EF, Moyzis RK, Dong Q, Lin C. True but not false memories are associated with the HTR2A gene. Neurobiol Learn Mem 2013; 106:204-9. [PMID: 24055687 DOI: 10.1016/j.nlm.2013.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/28/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
Previous research reported that serotonin receptor 2A gene (HTR2A) polymorphisms were associated with memory. However, it is unknown whether these genetic variants were associated with both true and false memories. The current study of 336 Han Chinese subjects tested 30 single nucleotide polymorphisms (SNPs) within the HTR2A gene for potential associations with true and false memories. False memories were assessed using the Deese-Roediger-McDermott (DRM) paradigm, in which people falsely remember semantically related (but unpresented) words. We found that 11 SNPs within the HTR2A gene were associated with true memory (p=0.000076-0.043). The associations between true memory and seven adjacent SNPs (i.e., rs1923888, rs1745837, rs9567739, rs3742279, rs655888, rs655854, and rs2296972) were still significant after multiple testing corrections. Haplotype-based association analysis revealed that, true memory was positively associated with haplotype A-C-C-G-C-T-A for these seven adjacent SNPs (p=0.000075), which was still significant after multiple testing correction. Only one SNP rs655854 was associated with false memory (p=0.023), and it was not significant after multiple testing correction. This study replicates, in an Asian population, that genetic variation in HTR2A is associated with episodic memory, and also suggests that this association is restricted to true memory.
Collapse
Affiliation(s)
- Bi Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | |
Collapse
|