1
|
Li HP, Cheng HL, Ding K, Zhang Y, Gao F, Zhu G, Zhang Z. New recognition of the heart-brain axis and its implication in the pathogenesis and treatment of PTSD. Eur J Neurosci 2024; 60:4661-4683. [PMID: 39044332 DOI: 10.1111/ejn.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a complex psychological disorder provoked by distressing experiences, and it remains without highly effective intervention strategies. The exploration of PTSD's underlying mechanisms is crucial for advancing diagnostic and therapeutic approaches. Current studies primarily explore PTSD through the lens of the central nervous system, investigating concrete molecular alterations in the cerebral area and neural circuit irregularities. However, the body's response to external stressors, particularly the changes in cardiovascular function, is often pronounced, evidenced by notable cardiac dysfunction. Consequently, examining PTSD with a focus on cardiac function is vital for the early prevention and targeted management of the disorder. This review undertakes a comprehensive literature analysis to detail the alterations in brain and heart structures and functions associated with PTSD. It also synthesizes potential mechanisms of heart-brain axis interactions relevant to the development of PTSD. Ultimately, by considering cardiac function, this review proposes novel perspectives for PTSD's prophylaxis and therapy.
Collapse
Affiliation(s)
- Hai-Peng Li
- Anhui University of Chinese Medicine, Hefei, China
| | - Hong-Liang Cheng
- The Affiliated Hospital of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Keke Ding
- Anhui University of Chinese Medicine, Hefei, China
| | - Yang Zhang
- Anhui University of Chinese Medicine, Hefei, China
| | - Fang Gao
- Anhui University of Chinese Medicine, Hefei, China
| | - Guoqi Zhu
- Anhui University of Chinese Medicine, Hefei, China
| | | |
Collapse
|
2
|
Grafe L, Miller KE, Ross RJ, Bhatnagar S. The importance of REM sleep fragmentation in the effects of stress on sleep: Perspectives from preclinical studies. Neurobiol Stress 2024; 28:100588. [PMID: 38075023 PMCID: PMC10709081 DOI: 10.1016/j.ynstr.2023.100588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 02/12/2024] Open
Abstract
Psychological stress poses a risk for sleep disturbances. Importantly, trauma-exposed individuals who develop posttraumatic stress disorder (PTSD) frequently report insomnia and recurrent nightmares. Clinical studies have provided insight into the mechanisms of these sleep disturbances. We review polysomnographic findings in PTSD and identify analogous measures that have been made in animal models of PTSD. There is a rich empirical and theoretical literature on rapid eye movement sleep (REMS) substrates of insomnia and nightmares, with an emphasis on REMS fragmentation. For future investigations of stress-induced sleep changes, we recommend a focus on tonic, phasic and other microarchitectural REMS measures. Power spectral density analysis of the sleep EEG should also be utilized. Animal models with high construct validity can provide insight into gender and time following stressor exposure as moderating variables. Ultimately, preclinical studies with translational potential will lead to improved treatment for stress-related sleep disturbances.
Collapse
Affiliation(s)
- Laura Grafe
- Department of Psychology, Bryn Mawr College, Bryn Mawr, PA, USA
| | | | - Richard J. Ross
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Isingrini E, Guinaudie C, Perret L, Guma E, Gorgievski V, Blum ID, Colby-Milley J, Bairachnaya M, Mella S, Adamantidis A, Storch KF, Giros B. Behavioral and Transcriptomic Changes Following Brain-Specific Loss of Noradrenergic Transmission. Biomolecules 2023; 13:biom13030511. [PMID: 36979445 PMCID: PMC10046559 DOI: 10.3390/biom13030511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Noradrenaline (NE) plays an integral role in shaping behavioral outcomes including anxiety/depression, fear, learning and memory, attention and shifting behavior, sleep-wake state, pain, and addiction. However, it is unclear whether dysregulation of NE release is a cause or a consequence of maladaptive orientations of these behaviors, many of which associated with psychiatric disorders. To address this question, we used a unique genetic model in which the brain-specific vesicular monoamine transporter-2 (VMAT2) gene expression was removed in NE-positive neurons disabling NE release in the entire brain. We engineered VMAT2 gene splicing and NE depletion by crossing floxed VMAT2 mice with mice expressing the Cre-recombinase under the dopamine β-hydroxylase (DBH) gene promotor. In this study, we performed a comprehensive behavioral and transcriptomic characterization of the VMAT2DBHcre KO mice to evaluate the role of central NE in behavioral modulations. We demonstrated that NE depletion induces anxiolytic and antidepressant-like effects, improves contextual fear memory, alters shifting behavior, decreases the locomotor response to amphetamine, and induces deeper sleep during the non-rapid eye movement (NREM) phase. In contrast, NE depletion did not affect spatial learning and memory, working memory, response to cocaine, and the architecture of the sleep-wake cycle. Finally, we used this model to identify genes that could be up- or down-regulated in the absence of NE release. We found an up-regulation of the synaptic vesicle glycoprotein 2c (SV2c) gene expression in several brain regions, including the locus coeruleus (LC), and were able to validate this up-regulation as a marker of vulnerability to chronic social defeat. The NE system is a complex and challenging system involved in many behavioral orientations given it brain wide distribution. In our study, we unraveled specific role of NE neurotransmission in multiple behavior and link it to molecular underpinning, opening future direction to understand NE role in health and disease.
Collapse
Affiliation(s)
- Elsa Isingrini
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
- Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, INCC UMR 8002, CNRS, F-75006 Paris, France
| | - Chloé Guinaudie
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Léa Perret
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Elisa Guma
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Victor Gorgievski
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Ian D. Blum
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Jessica Colby-Milley
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Maryia Bairachnaya
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Sébastien Mella
- Cytometry and Biomarkers Platform, Unit of Technology and Service, Institut Pasteur, Université de Paris, F-75015 Paris, France
- Bioinformatics and Biostatistics Hub Platform, Institut Pasteur, Université de Paris, F-75015 Paris, France
| | - Antoine Adamantidis
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, 3010 Bern, Switzerland
- Department of Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Kai-Florian Storch
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, QC H4H 1R3, Canada
- Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, INCC UMR 8002, CNRS, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
4
|
A probabilistic model for the ultradian timing of REM sleep in mice. PLoS Comput Biol 2021; 17:e1009316. [PMID: 34432801 PMCID: PMC8423363 DOI: 10.1371/journal.pcbi.1009316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/07/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022] Open
Abstract
A salient feature of mammalian sleep is the alternation between rapid eye movement (REM) and non-REM (NREM) sleep. However, how these two sleep stages influence each other and thereby regulate the timing of REM sleep episodes is still largely unresolved. Here, we developed a statistical model that specifies the relationship between REM and subsequent NREM sleep to quantify how REM sleep affects the following NREM sleep duration and its electrophysiological features in mice. We show that a lognormal mixture model well describes how the preceding REM sleep duration influences the amount of NREM sleep till the next REM sleep episode. The model supports the existence of two different types of sleep cycles: Short cycles form closely interspaced sequences of REM sleep episodes, whereas during long cycles, REM sleep is first followed by an interval of NREM sleep during which transitions to REM sleep are extremely unlikely. This refractory period is characterized by low power in the theta and sigma range of the electroencephalogram (EEG), low spindle rate and frequent microarousals, and its duration proportionally increases with the preceding REM sleep duration. Using our model, we estimated the propensity for REM sleep at the transition from NREM to REM sleep and found that entering REM sleep with higher propensity resulted in longer REM sleep episodes with reduced EEG power. Compared with the light phase, the buildup of REM sleep propensity was slower during the dark phase. Our data-driven modeling approach uncovered basic principles underlying the timing and duration of REM sleep episodes in mice and provides a flexible framework to describe the ultradian regulation of REM sleep in health and disease.
Collapse
|
5
|
Giustino TF, Maren S. Noradrenergic Modulation of Fear Conditioning and Extinction. Front Behav Neurosci 2018; 12:43. [PMID: 29593511 PMCID: PMC5859179 DOI: 10.3389/fnbeh.2018.00043] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
The locus coeruleus norepinephrine (LC-NE) system plays a broad role in learning and memory. Here we begin with an overview of the LC-NE system. We then consider how both direct and indirect manipulations of the LC-NE system affect cued and contextual aversive learning and memory. We propose that NE dynamically modulates Pavlovian conditioning and extinction, either promoting or impairing learning aversive processes under different levels of behavioral arousal. We suggest that under high levels of stress (e.g., during/soon after fear conditioning) the locus coeruleus (LC) promotes cued fear learning by enhancing amygdala function while simultaneously blunting prefrontal function. Under low levels of arousal, the LC promotes PFC function to promote downstream inhibition of the amygdala and foster the extinction of cued fear. Thus, LC-NE action on the medial prefrontal cortex (mPFC) might be described by an inverted-U function such that it can either enhance or hinder learning depending on arousal states. In addition, LC-NE seems to be particularly important for the acquisition, consolidation and extinction of contextual fear memories. This may be due to dense adrenoceptor expression in the hippocampus (HPC) which encodes contextual information, and the ability of NE to regulate long-term potentiation (LTP). Moreover, recent work reveals that the diversity of LC-NE functions in aversive learning and memory are mediated by functionally heterogeneous populations of LC neurons that are defined by their projection targets. Hence, LC-NE function in learning and memory is determined by projection-specific neuromodulation that accompanies various states of behavioral arousal.
Collapse
Affiliation(s)
- Thomas F Giustino
- Department of Psychological and Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
6
|
Bertaina-Anglade V, O'Connor SM, Andriambeloson E. A perspective on the contribution of animal models to the pharmacological treatment of posttraumatic stress disorder. Australas Psychiatry 2017; 25:342-347. [PMID: 28747120 DOI: 10.1177/1039856217716288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Posttraumatic stress disorder (PTSD) is a prevalent, chronic, disabling disorder that may develop following exposure to a traumatic event. This review summarizes currently used animal models of PTSD and their potential role in the development of better therapeutics. Heterogeneity is one of the main characteristics of PTSD with the consequence that many pharmacological approaches are used to relieve symptoms of PTSD. To address the translational properties of the animal models, we discuss the types of stressors used, the rodent correlates of human PTSD (DSM-5) symptoms, and the efficacy of approved, recommended and off-label drugs used to treat PTSD in 'PTSD-animals'. CONCLUSIONS Currently available animal models reproduce most PTSD symptoms and are validated by existing therapeutics. However, novel therapeutics are needed for this disorder as not one drug alleviates all symptoms and many have side effects that lead to non-compliance among PTSD patients. The true translational power of animal models of PTSD will only be demonstrated when new therapeutics acting through novel mechanisms become available for clinical practice.
Collapse
Affiliation(s)
| | - Susan M O'Connor
- Vice President, Neuroscience Research, Bionomics, Thebarton, SA, Australia
| | | |
Collapse
|
7
|
Singh A, Mallick BN. Targeting modulation of noradrenalin release in the brain for amelioration of REMS loss-associated effects. J Transl Int Med 2015; 3:8-16. [PMID: 27847879 PMCID: PMC4936468 DOI: 10.4103/2224-4018.154288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rapid eye movement sleep (REMS) loss affects most of the physiological processes, and it has been proposed that REMS maintains normal physiological processes. Changes in cultural, social, personal traits and life-style severely affect the amount and pattern of sleep, including REMS, which then manifests symptoms in animals, including humans. The effects may vary from simple fatigue and irritability to severe patho-physiological and behavioral deficits such as cognitive and behavioral dysfunctions. It has been a challenge to identify a molecule(s) that may have a potential for treating REMS loss-associated symptoms, which are very diverse. For decades, the critical role of locus coeruleus neurons in regulating REMS has been known, which has further been supported by the fact that the noradrenalin (NA) level is elevated in the brain after REMS loss. In this review, we have collected evidence from the published literature, including those from this laboratory, and argue that factors that affect REMS and vice versa modulate the level of a common molecule, the NA. Further, NA is known to affect the physiological processes affected by REMS loss. Therefore, we propose that modulation of the level of NA in the brain may be targeted for treating REMS loss-related symptoms. Further, we also argue that among the various ways to affect the release of NA-level, targeting α2 adrenoceptor autoreceptor on the pre-synaptic terminal may be the better option for ameliorating REMS loss-associated symptoms.
Collapse
Affiliation(s)
- Abhishek Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|