1
|
Jaber M. Genetic and environmental mouse models of autism reproduce the spectrum of the disease. J Neural Transm (Vienna) 2023; 130:425-432. [PMID: 36318343 DOI: 10.1007/s00702-022-02555-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/17/2022] [Indexed: 03/23/2023]
Abstract
Genetic and environmental factors increase autism spectrum disorder (ASD) incidence, and this has led to the generation of corresponding animal models, with some showing strong construct and face validity. This short review focuses on results we have recently obtained with environmental and genetic mouse models of ASD and that are the valproic acid, the poly I:C and the Shank 3 models. This has allowed us to provide a comparative description of these widely used animal models providing an interesting perspective as to the pros and cons of each one of them, in our experimental settings. In these papers, we focused on motor and gait disorders which are currently not included in the diagnosis criteria, but which may provide new insights to ASD pathophysiology potentially leading to innovative therapies for a disease that currently has none. In all these models, we reported behavioral, cellular and molecular alterations related to the cerebellum. Motor and gait deficits were observed to various degrees in animal models and, when strongly present, they were correlated to the severity of social deficits as well as to the number of cerebellar Purkinje cells. Additionally, we also reported that, like in humans, males are more severely affected than females in these ASD models. These findings, along with an increasing body of literature, open new hopes in the ASD field pointing to brain regions, such the cerebellum, that are at the crossroads between cognitive, social and motor deficits. Targeting these brain regions and their underlying pathways and synaptic connections may prove of significant benefits.
Collapse
Affiliation(s)
- Mohamed Jaber
- Université de Poitiers, Inserm, Laboratoire de Neurosciences Expérimentales et Cliniques, Bâtiment B36, 1 Rue Georges Bonnet, BP 633, TSA 51106, 86073, Poitiers cedex9, France.
- Centre Hospitalier Universitaire de Poitiers, Poitiers, France.
| |
Collapse
|
2
|
Brown RE. Sex Differences in Neurodevelopment and Its Disorders. NEURODEVELOPMENTAL PEDIATRICS 2023:179-212. [DOI: 10.1007/978-3-031-20792-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Recent Developments in Autism Genetic Research: A Scientometric Review from 2018 to 2022. Genes (Basel) 2022; 13:genes13091646. [PMID: 36140813 PMCID: PMC9498399 DOI: 10.3390/genes13091646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Genetic research in Autism Spectrum Disorder (ASD) has progressed tremendously in recent decades. Dozens of genetic loci and hundreds of alterations in the genetic sequence, expression, epigenetic transformation, and interactions with other physiological and environmental systems have been found to increase the likelihood of developing ASD. There is therefore a need to represent this wide-ranging yet voluminous body of literature in a systematic manner so that this information can be synthesised and understood at a macro level. Therefore, this study made use of scientometric methods, particularly document co-citation analysis (DCA), to systematically review literature on ASD genetic research from 2018 to 2022. A total of 14,818 articles were extracted from Scopus and analyzed with CiteSpace. An optimized DCA analysis revealed that recent literature on ASD genetic research can be broadly organised into 12 major clusters representing various sub-topics. These clusters are briefly described in the manuscript and potential applications of this study are discussed.
Collapse
|
4
|
Esnafoglu E, Cırrık S. Apo D and Apo E levels in Autism spectrum disorders. Asian J Psychiatr 2022; 73:103177. [PMID: 35623271 DOI: 10.1016/j.ajp.2022.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Erman Esnafoglu
- Ordu University, Faculty of Medicine, Deparment of Child and Adolescent Psychiatry, Ordu, Turkey.
| | - Selma Cırrık
- Ordu University, Faculty of Medicine, Deparment of Medical Phisiology, Ordu, Turkey
| |
Collapse
|
5
|
Postsynaptic autism spectrum disorder genes and synaptic dysfunction. Neurobiol Dis 2021; 162:105564. [PMID: 34838666 DOI: 10.1016/j.nbd.2021.105564] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
This review provides an overview of the synaptic dysfunction of neuronal circuits and the ensuing behavioral alterations caused by mutations in autism spectrum disorder (ASD)-linked genes directly or indirectly affecting the postsynaptic neuronal compartment. There are plenty of ASD risk genes, that may be broadly grouped into those involved in gene expression regulation (epigenetic regulation and transcription) and genes regulating synaptic activity (neural communication and neurotransmission). Notably, the effects mediated by ASD-associated genes can vary extensively depending on the developmental time and/or subcellular site of expression. Therefore, in order to gain a better understanding of the mechanisms of disruptions in postsynaptic function, an effort to better model ASD in experimental animals is required to improve standardization and increase reproducibility within and among studies. Such an effort holds promise to provide deeper insight into the development of these disorders and to improve the translational value of preclinical studies.
Collapse
|
6
|
Vuattoux D, Colomer-Lahiguera S, Fernandez PA, Jequier Gygax M, Choucair ML, Beck-Popovic M, Diezi M, Manificat S, Latifyan S, Ramelet AS, Eicher M, Chabane N, Renella R. Cancer Care of Children, Adolescents and Adults With Autism Spectrum Disorders: Key Information and Strategies for Oncology Teams. Front Oncol 2021; 10:595734. [PMID: 33552969 PMCID: PMC7856416 DOI: 10.3389/fonc.2020.595734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/07/2020] [Indexed: 11/14/2022] Open
Abstract
Delivering optimal cancer care to children, adolescents and adults with ASD has recently become a healthcare priority and represents a major challenge for all providers involved. In this review, and after consideration of the available evidence, we concisely deliver key information on this heterogenous group of neurodevelopmental disorders, as well as recommendations and concrete tools for the enhanced oncological care of this vulnerable population of patients.
Collapse
Affiliation(s)
- Delphine Vuattoux
- Division of Autism Spectrum Disorders and Related Conditions, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Sara Colomer-Lahiguera
- Institute of Higher Education and Research in Healthcare, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Pierre-Alain Fernandez
- Division of Autism Spectrum Disorders and Related Conditions, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Marine Jequier Gygax
- Division of Autism Spectrum Disorders and Related Conditions, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Marie-Louise Choucair
- Pediatric Hematology-Oncology Unit, Division of Pediatrics, Department “Woman-Mother-Child”, Lausanne University Hospital, Lausanne, Switzerland
| | - Maja Beck-Popovic
- Pediatric Hematology-Oncology Unit, Division of Pediatrics, Department “Woman-Mother-Child”, Lausanne University Hospital, Lausanne, Switzerland
| | - Manuel Diezi
- Pediatric Hematology-Oncology Unit, Division of Pediatrics, Department “Woman-Mother-Child”, Lausanne University Hospital, Lausanne, Switzerland
| | - Sabine Manificat
- Division of Autism Spectrum Disorders and Related Conditions, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Sofiya Latifyan
- Division of Medical Oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Anne-Sylvie Ramelet
- Institute of Higher Education and Research in Healthcare, University of Lausanne, Lausanne, Switzerland
- Department “Woman-Mother-Child”, Lausanne University Hospital, Lausanne, Switzerland
| | - Manuela Eicher
- Institute of Higher Education and Research in Healthcare, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Nadia Chabane
- Division of Autism Spectrum Disorders and Related Conditions, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Raffaele Renella
- Pediatric Hematology-Oncology Unit, Division of Pediatrics, Department “Woman-Mother-Child”, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
7
|
Matas E, Maisterrena A, Thabault M, Balado E, Francheteau M, Balbous A, Galvan L, Jaber M. Major motor and gait deficits with sexual dimorphism in a Shank3 mutant mouse model. Mol Autism 2021; 12:2. [PMID: 33468258 PMCID: PMC7814442 DOI: 10.1186/s13229-020-00412-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Contrasting findings were reported in several animal models with a Shank3 mutation used to induce various autism spectrum disorder (ASD) symptoms. Here, we aimed at investigating behavioral, cellular, and molecular consequences of a C-terminal (frameshift in exon 21) deletion in Shank3 protein in mice, a mutation that is also found in clinical conditions and which results in loss of major isoforms of Shank3. A special focus was made on cerebellar related parameters. Methods All three genotypes were analyzed [wild type (WT), heterozygote (Shank3+/ΔC) and homozygote (Shank3 ΔC/ΔC)] and males and females were separated into two distinct groups. Motor and social behavior, gait, Purkinje cells (PC) and glutamatergic protein levels were determined. Behavioral and cellular procedures used here were previously validated using two environmental animal models of ASD. ANOVA and post-hoc analysis were used for statistical analysis. Results Shank3 ΔC/ΔC mice showed significant impairments in social novelty preference, stereotyped behavior and gait. These were accompanied by a decreased number of PC in restricted cerebellar sub-regions and decreased cerebellar expression of mGluR5. Females Shank3 ΔC/ΔC were less affected by the mutation than males. Shank3+/ΔC mice showed impairments only in social novelty preference, grooming, and decreased mGluR5 expression and that were to a much lesser extent than in Shank3 ΔC/ΔC mice. Limitations As Shank3 mutation is a haploinsufficiency, it is of interest to emphasize that Shank3+/ΔC mice showed only mild to no deficiencies compared to Shank3 ΔC/ΔC. Conclusions Our findings indicate that several behavioral, cellular, and molecular parameters are affected in this animal model. The reported deficits are more pronounced in males than in females. Additionally, male Shank3 ΔC/ΔC mice show more pronounced alterations than Shank3+/ΔC. Together with our previous findings in two environmental animal models of ASD, our studies indicate that gait dysfunction constitutes a robust set of motor ASD symptoms that may be considered for implementation in clinical settings as an early and quantitative diagnosis criteria.
Collapse
Affiliation(s)
- Emmanuel Matas
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Alexandre Maisterrena
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Mathieu Thabault
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Eric Balado
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Maureen Francheteau
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Anais Balbous
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France.,CHU de Poitiers, 86000 Poitiers, France
| | - Laurie Galvan
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Mohamed Jaber
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France. .,CHU de Poitiers, 86000 Poitiers, France.
| |
Collapse
|
8
|
Enhanced LTP of population spikes in the dentate gyrus of mice haploinsufficient for neurobeachin. Sci Rep 2020; 10:16058. [PMID: 32994505 PMCID: PMC7524738 DOI: 10.1038/s41598-020-72925-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Deletion of the autism candidate molecule neurobeachin (Nbea), a large PH-BEACH-domain containing neuronal protein, has been shown to affect synaptic function by interfering with neurotransmitter receptor targeting and dendritic spine formation. Previous analysis of mice lacking one allele of the Nbea gene identified impaired spatial learning and memory in addition to altered autism-related behaviours. However, no functional data from living heterozygous Nbea mice (Nbea+/−) are available to corroborate the behavioural phenotype. Here, we explored the consequences of Nbea haploinsufficiency on excitation/inhibition balance and synaptic plasticity in the intact hippocampal dentate gyrus of Nbea+/− animals in vivo by electrophysiological recordings. Based on field potential recordings, we show that Nbea+/− mice display enhanced LTP of the granule cell population spike, but no differences in basal synaptic transmission, synapse numbers, short-term plasticity, or network inhibition. These data indicate that Nbea haploinsufficiency causes remarkably specific alterations to granule cell excitability in vivo, which may contribute to the behavioural abnormalities in Nbea+/− mice and to related symptoms in patients.
Collapse
|
9
|
Chabbert D, Caubit X, Roubertoux PL, Carlier M, Habermann B, Jacq B, Salin P, Metwaly M, Frahm C, Fatmi A, Garratt AN, Severac D, Dubois E, Kerkerian-Le Goff L, Fasano L, Gubellini P. Postnatal Tshz3 Deletion Drives Altered Corticostriatal Function and Autism Spectrum Disorder-like Behavior. Biol Psychiatry 2019; 86:274-285. [PMID: 31060802 DOI: 10.1016/j.biopsych.2019.03.974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heterozygous deletion of the TSHZ3 gene, encoding for the teashirt zinc-finger homeobox family member 3 (TSHZ3) transcription factor that is highly expressed in cortical projection neurons (CPNs), has been linked to an autism spectrum disorder (ASD) syndrome. Similarly, mice with Tshz3 haploinsufficiency show ASD-like behavior, paralleled by molecular changes in CPNs and corticostriatal synaptic dysfunctions. Here, we aimed at gaining more insight into "when" and "where" TSHZ3 is required for the proper development of the brain, and its deficiency crucial for developing this ASD syndrome. METHODS We generated and characterized a novel mouse model of conditional Tshz3 deletion, obtained by crossing Tshz3flox/flox with CaMKIIalpha-Cre mice, in which Tshz3 is deleted in CPNs from postnatal day 2 to 3 onward. We characterized these mice by a multilevel approach combining genetics, cell biology, electrophysiology, behavioral testing, and bioinformatics. RESULTS These conditional Tshz3 knockout mice exhibit altered cortical expression of more than 1000 genes, ∼50% of which have their human orthologue involved in ASD, in particular genes encoding for glutamatergic synapse components. Consistently, we detected electrophysiological and synaptic changes in CPNs and impaired corticostriatal transmission and plasticity. Furthermore, these mice showed strong ASD-like behavioral deficits. CONCLUSIONS Our study reveals a crucial postnatal role of TSHZ3 in the development and functioning of the corticostriatal circuitry and provides evidence that dysfunction in these circuits might be determinant for ASD pathogenesis. Our conditional Tshz3 knockout mouse constitutes a novel ASD model, opening the possibility for an early postnatal therapeutic window for the syndrome linked to TSHZ3 haploinsufficiency.
Collapse
Affiliation(s)
| | | | | | | | - Bianca Habermann
- Aix Marseille Univ, CNRS, IBDM, Marseille, France; Aix Marseille Univ, INSERM, TAGC, Marseille, France
| | - Bernard Jacq
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Pascal Salin
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | | | - Ahmed Fatmi
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Alistair N Garratt
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité University Hospital Berlin, Berlin, Germany
| | - Dany Severac
- Univ Montpellier, CNRS, INSERM, MGX, Montpellier, France
| | - Emeric Dubois
- Univ Montpellier, CNRS, INSERM, MGX, Montpellier, France
| | | | | | | |
Collapse
|