1
|
Hofstra BM, Hoeksema EE, Kas MJH, Verbeek DS. Cross-species analysis uncovers the mitochondrial stress response in the hippocampus as a shared mechanism in mouse early life stress and human depression. Neurobiol Stress 2024; 31:100643. [PMID: 38800537 PMCID: PMC11127276 DOI: 10.1016/j.ynstr.2024.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Depression, or major depressive disorder, poses a significant burden for both individuals and society, affecting approximately 10.8% of the general population. This psychiatric disorder leads to approximately 800,000 deaths per year. A combination of genetic and environmental factors such as early life stress (ELS) increase the risk for development of depression in humans, and a clear role for the hippocampus in the pathophysiology of depression has been shown. Nevertheless, the underlying mechanisms of depression remain poorly understood, resulting in a lack of effective treatments. To better understand the core mechanisms underlying the development of depression, we used a cross-species design to investigate shared hippocampal pathophysiological mechanisms in mouse ELS and human depression. Mice were subjected to ELS by a maternal separation paradigm, followed by RNA sequencing analysis of the adult hippocampal tissue. This identified persistent transcriptional changes linked to mitochondrial stress response pathways, with oxidative phosphorylation and protein folding emerging as the main mechanisms affected by maternal separation. Remarkably, there was a significant overlap between the pathways involved in mitochondrial stress response we observed and publicly available RNAseq data from hippocampal tissue of depressive patients. This cross-species conservation of changes in gene expression of mitochondria-related genes suggests that mitochondrial stress may play a pivotal role in the development of depression. Our findings highlight the potential significance of the hippocampal mitochondrial stress response as a core mechanism underlying the development of depression. Further experimental investigations are required to expand our understanding of these mechanisms.
Collapse
Affiliation(s)
- Bente M. Hofstra
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands
- Department of Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Emmy E. Hoeksema
- Department of Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Martien JH. Kas
- Department of Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Dineke S. Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
2
|
Matcham AC, Toma K, Tsai NY, Sze CJ, Lin PY, Stewart IF, Duan X. Cadherin-13 Maintains Retinotectal Synapses via Transneuronal Interactions. J Neurosci 2024; 44:e1310232023. [PMID: 38123991 PMCID: PMC10860569 DOI: 10.1523/jneurosci.1310-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Maintaining precise synaptic contacts between neuronal partners is critical to ensure the proper functioning of the mammalian central nervous system (CNS). Diverse cell recognition molecules, such as classic cadherins (Cdhs), are part of the molecular machinery mediating synaptic choices during development and synaptic maintenance. Yet, the principles governing neuron-neuron wiring across diverse CNS neuron types remain largely unknown. The retinotectal synapses, connections from the retinal ganglion cells (RGCs) to the superior collicular (SC) neurons, offer an ideal experimental system to reveal molecular logic underlying synaptic choices and formation. This is due to the retina's unidirectional and laminar-restricted projections to the SC and the large databases of presynaptic RGC subtypes and postsynaptic SC neuronal types. Here, we focused on determining the role of Type II Cdhs in wiring the retinotectal synapses. We surveyed Cdhs expression patterns at neuronal resolution and revealed that Cdh13 is enriched in the wide-field neurons in the superficial SC (sSC). In either the Cdh13 null mutant or selective adult deletion within the wide-field neurons, there is a significant reduction of spine densities in the distal dendrites of these neurons in both sexes. Additionally, Cdh13 removal from presynaptic RGCs reduced dendritic spines in the postsynaptic wide-field neurons. Cdh13-expressing RGCs use differential mechanisms than αRGCs and On-Off Direction-Selective Ganglion Cells (ooDSGCs) to form specific retinotectal synapses. The results revealed a selective transneuronal interaction mediated by Cdh13 to maintain proper retinotectal synapses in vivo.
Collapse
Affiliation(s)
- Angela C Matcham
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Kenichi Toma
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Nicole Y Tsai
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Christina J Sze
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Pin-Yeh Lin
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Ilaria F Stewart
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| | - Xin Duan
- Neuroscience Graduate Program, Department of Ophthalmology, Kavli Institute for Fundamental Neuroscience, University of California SanFrancisco, San Francisco 94143-2811, California
| |
Collapse
|
3
|
Lin Y, Li H, Zhang J, Yang Z, Zhou Y, Liu L, Qian Q. Polymorphism of Estrogen Receptor Genes and Its Interactions With Neurodevelopmental Genes in Attention Deficit Hyperactivity Disorder Among Chinese Han Descent. Psychiatry Investig 2023; 20:775-785. [PMID: 37614014 PMCID: PMC10460975 DOI: 10.30773/pi.2023.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 08/25/2023] Open
Abstract
OBJECTIVE Attention deficit hyperactivity disorder (ADHD) is a polygenic neurodevelopmental disorder with significant gender differences. The sexual dimorphism of ADHD may be associated with estrogen acting through estrogen receptors (ESR). This study investigates the impact of ESR gene polymorphism and its interactions with neurodevelopmental genes on ADHD susceptibility. METHODS The study compared genotyping data of single nucleotide polymorphisms in ESR1 and ESR2 in 1,035 ADHD cases and 962 controls. The gene-gene interactions between ESR genes and three neurodevelopmental genes (brain-derived neurotrophic factor [BDNF], synaptosomal-associated protein of 25 kDa gene [SNAP25], and cadherin-13 [CDH13]) in ADHD were investigated using generalized multifactor dimensionality reduction and verified by logistic regression analysis. RESULTS The G allele of rs960070/ESR2 (empirical p=0.0076) and the A allele of rs8017441/ESR2 (empirical p=0.0426) were found significantly higher in ADHD cases than in the controls but not in male or female subgroups. Though no difference was found in all subjects or females, the A allele of rs9340817/ESR1 (empirical p=0.0344) was found significantly higher in ADHD cases than controls in males. We also found genetic interaction models between ESR2 gene, neurodevelopmental genes and ADHD susceptibility in males (ESR2 rs960070/BDNF rs6265/BDNF rs2049046/SNAP25 rs362987/CDH13 rs6565113) and females (ESR2 rs960070/BDNF rs6265/BDNF rs2049046) separately, though it was negative in overall subjects. CONCLUSION The ESR gene polymorphism associates with ADHD among Chinese Han children, with interactions between ESR genes and neurodevelopmental genes potentially influencing the susceptibility of ADHD.
Collapse
Affiliation(s)
- Yiwei Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Haimei Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Jing Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Ziqi Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yi Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Lu Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Qiujin Qian
- Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- National Clinical Research Center for Mental Disorders & The Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| |
Collapse
|
4
|
Dos Santos AS, Segabinazi E, de Almeida W, Faustino AM, Bronauth LP, Dos Santos TM, Ferreira FS, Wyse ATS, Marcuzzo S, Pereira LO. Resistance exercise was safe for the pregnancy and offspring's development and partially protected rats against early life stress-induced effects. Behav Brain Res 2023; 445:114362. [PMID: 36889464 DOI: 10.1016/j.bbr.2023.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Promising evidence points to gestational physical exercise as the key to preventing various disorders that affect the offspring neurodevelopment, but there are no studies showing the impact of resistance exercise on offspring health. Thus, the aim of this study was to investigate whether resistance exercise during pregnancy is able to prevent or to alleviate the possible deleterious effects on offspring, caused by early life-stress (ELS). Pregnant rats performed resistance exercise throughout the gestational period:they climbed a sloping ladder with a weight attached to their tail, 3 times a week. Male and female pups, on the day of birth (P0), were divided into 4 experimental groups: 1) rats of sedentary mothers (SED group); 2) rats of exercised mothers (EXE group); 3) rats of sedentary mothers and submitted to maternal separation (ELS group) and 4) rats of exercised mothers and submitted to MS (EXE + ELS group). From P1 to P10, pups from groups 3 and 4 were separated from their mothers for 3 h/day. Maternal behavior was assessed. From P30, behavioral tests were performed and on P38 the animals were euthanized and prefrontal cortex samples were collected. Oxidative stress and tissue damage analysis by Nissl staining were performed. Our results demonstrate that male rats are more susceptible to ELS than females, showing impulsive and hyperactive behavior similar to that seen in children with ADHD. This behavior was attenuated by the gestational resistance exercise. Our results demonstrate, for the first time, that resistance exercise performed during pregnancy seems to be safe for the pregnancy and offspring's neurodevelopment and are effective in preventing ELS-induced damage only in male rats. Interestingly, resistance exercise during pregnancy improved maternal care and it is reasonable to propose that this finding may be related to the protective role on the animals neurodevelopment, observed in our study.
Collapse
Affiliation(s)
- Adriana Souza Dos Santos
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ethiane Segabinazi
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Wellington de Almeida
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline Martins Faustino
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Loise Peres Bronauth
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tiago Marcon Dos Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Silva Ferreira
- Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Marcuzzo
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Mohammad GS, Joca S, Starnawska A. The Cannabis-Induced Epigenetic Regulation of Genes Associated with Major Depressive Disorder. Genes (Basel) 2022; 13:1435. [PMID: 36011346 PMCID: PMC9407536 DOI: 10.3390/genes13081435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
The prevalence of depression is increasing worldwide, as is the number of people suffering from treatment-resistant depression; these patients constitute 30% of those treated. Unfortunately, there have not been significant advances in the treatment of this disorder in the past few decades. Exposure to cannabis and cannabis-derived compounds impacts depression symptomatology in different ways, with evidence indicating that cannabidiol has antidepressant effects; there have been mixed results with medical cannabis. Even though the exact molecular mechanisms of the action underlying changes in depression symptomatology upon exposure to cannabis and cannabis-derived compounds are still unknown, there is strong evidence that these agents have a widespread impact on epigenetic regulation. We hypothesized that exposure to cannabis or cannabis-derived compounds changes the DNA methylation levels of genes associated with depression. To test this hypothesis, we first performed a literature search to identify genes that are differentially methylated upon exposure to cannabis and cannabis-derived compounds, as reported in methylome-wide association studies. We next checked whether genes residing in loci associated with depression, as identified in the largest currently available genome-wide association study of depression, were reported to be epigenetically regulated by cannabis or cannabis-related compounds. Multiple genes residing in loci associated with depression were found to be epigenetically regulated by exposure to cannabis or cannabis-derived compounds. This epigenomic regulation of depression-associated genes by cannabis or cannabis-derived compounds was reported across diverse organisms, tissues, and developmental stages and occurred in genes crucial for neuronal development, functioning, survival, and synapse functioning, as well as in genes previously implicated in other mental disorders.
Collapse
Affiliation(s)
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo (USP), Ribeirão Preto 14040-903, Brazil
| | - Anna Starnawska
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, Center for Integrative Sequencing, iSEQ, 8000 Aarhus, Denmark
| |
Collapse
|
6
|
Effects of early life adversities upon memory processes and cognition in rodent models. Neuroscience 2022; 497:282-307. [PMID: 35525496 DOI: 10.1016/j.neuroscience.2022.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023]
Abstract
Exposure to stressors in early postnatal life induces long-lasting modifications in brainfunction.Thisplasticity,an essential characteristic of the brain that enables adaptation to the environment, may also induce impairments in some psychophysiological functions, including learning and memory. Early life stress (ELS) has long-term effects on thehypothalamic-pituitary-adrenal axisresponse to stressors, and has been reported to lead toneuroinflammation,altered levelsof neurotrophic factors, modifications inneurogenesis andsynaptic plasticity,with changes in neurotransmitter systems and network functioning. In this review, we focus on early postnatal stress in animal models and their effects on learning and memory.Many studies have reported ELS-induced impairments in different types of memories, including spatial memory, fear memory, recognition (both for objects and social) memory, working memory and reversal learning. Studies are not always in agreement, however, no effects, or sometimes facilitation, being reported, depending on the nature and intensity of the early intervention, as well as the age when the outcome was evaluated and the sex of the animals. When considering processes occurring after consolidation, related with memory maintenance or modification, there are a very reduced number of reports. Future studies addressing the mechanisms underlying memory changes for ELS should shed some light on the understanding of the different effects induced by stressors of different types and intensities on cognitive functions.
Collapse
|
7
|
A Common CDH13 Variant Is Associated with Low Agreeableness and Neural Responses to Working Memory Tasks in ADHD. Genes (Basel) 2021; 12:genes12091356. [PMID: 34573337 PMCID: PMC8471784 DOI: 10.3390/genes12091356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
The cell—cell signaling gene CDH13 is associated with a wide spectrum of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD), autism, and major depression. CDH13 regulates axonal outgrowth and synapse formation, substantiating its relevance for neurodevelopmental processes. Several studies support the influence of CDH13 on personality traits, behavior, and executive functions. However, evidence for functional effects of common gene variation in the CDH13 gene in humans is sparse. Therefore, we tested for association of a functional intronic CDH13 SNP rs2199430 with ADHD in a sample of 998 adult patients and 884 healthy controls. The Big Five personality traits were assessed by the NEO-PI-R questionnaire. Assuming that altered neural correlates of working memory and cognitive response inhibition show genotype-dependent alterations, task performance and electroencephalographic event-related potentials were measured by n-back and continuous performance (Go/NoGo) tasks. The rs2199430 genotype was not associated with adult ADHD on the categorical diagnosis level. However, rs2199430 was significantly associated with agreeableness, with minor G allele homozygotes scoring lower than A allele carriers. Whereas task performance was not affected by genotype, a significant heterosis effect limited to the ADHD group was identified for the n-back task. Heterozygotes (AG) exhibited significantly higher N200 amplitudes during both the 1-back and 2-back condition in the central electrode position Cz. Consequently, the common genetic variation of CDH13 is associated with personality traits and impacts neural processing during working memory tasks. Thus, CDH13 might contribute to symptomatic core dysfunctions of social and cognitive impairment in ADHD.
Collapse
|
8
|
Ahi EP, Tsakoumis E, Brunel M, Schmitz M. Transcriptional study reveals a potential leptin-dependent gene regulatory network in zebrafish brain. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1283-1298. [PMID: 34236575 PMCID: PMC8302498 DOI: 10.1007/s10695-021-00967-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/12/2021] [Indexed: 06/01/2023]
Abstract
The signal mediated by leptin hormone and its receptor is a major regulator of body weight, food intake and metabolism. In mammals and many teleost fish species, leptin has an anorexigenic role and inhibits food intake by influencing the appetite centres in the hypothalamus. However, the regulatory connections between leptin and downstream genes mediating its appetite-regulating effects are still not fully explored in teleost fish. In this study, we used a loss of function leptin receptor zebrafish mutant and real-time quantitative PCR to assess brain expression patterns of several previously identified anorexigenic genes downstream of leptin signal under different feeding conditions (normal feeding, 7-day fasting, 2 and 6-h refeeding). These downstream factors include members of cart genes, crhb and gnrh2, as well as selected genes co-expressed with them based on a zebrafish co-expression database. Here, we found a potential gene expression network (GRN) comprising the abovementioned genes by a stepwise approach of identifying co-expression modules and predicting their upstream regulators. Among the transcription factors (TFs) predicted as potential upstream regulators of this GRN, we found expression pattern of sp3a to be correlated with transcriptional changes of the downstream gene network. Interestingly, the expression and transcriptional activity of Sp3 orthologous gene in mammals have already been implicated to be under the influence of leptin signal. These findings suggest a potentially conserved regulatory connection between leptin and sp3a, which is predicted to act as a transcriptional driver of a downstream gene network in the zebrafish brain.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Emmanouil Tsakoumis
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| | - Mathilde Brunel
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Allmas Allé 5, SE-750 07 Uppsala, Sweden
| | - Monika Schmitz
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| |
Collapse
|
9
|
Kozlova I, Sah S, Keable R, Leshchyns'ka I, Janitz M, Sytnyk V. Cell Adhesion Molecules and Protein Synthesis Regulation in Neurons. Front Mol Neurosci 2020; 13:592126. [PMID: 33281551 PMCID: PMC7689008 DOI: 10.3389/fnmol.2020.592126] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Cell adhesion molecules (CAMs) mediate interactions of neurons with the extracellular environment by forming adhesive bonds with CAMs on adjacent membranes or via binding to proteins of the extracellular matrix. Binding of CAMs to their extracellular ligands results in the activation of intracellular signaling cascades, leading to changes in neuronal structure and the molecular composition and function of neuronal contacts. Ultimately, many of these changes depend on the synthesis of new proteins. In this review, we summarize the evidence showing that CAMs regulate protein synthesis by modulating the activity of transcription factors, gene expression, protein translation, and the structure and distribution of organelles involved in protein synthesis and transport.
Collapse
Affiliation(s)
- Irina Kozlova
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Saroj Sah
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
10
|
Gillespie SL, Cole SW, Christian LM. Early adversity and the regulation of gene expression: Implications for prenatal health. Curr Opin Behav Sci 2019; 28:111-118. [PMID: 31815157 PMCID: PMC6897329 DOI: 10.1016/j.cobeha.2019.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Early life, including prenatal development and childhood, is a period of sensitivity, with potential for developmental programming under conditions of adversity. The intergenerational effects of early adversity have received attention, most often studied in relation to fetal development according to maternal exposures. Less often considered but critically important is the effect of early adversity on future prenatal risk (e.g., risk for preeclampsia, preterm birth), which threatens the health of mother and infant. The body's ability to turn collections of genes "on" or "off" across a range of tissues via receptor-driven transcription factors and epigenetic mechanisms (i.e., chemical modifications to the genome) in response to the perceived environment may help to explain such associations. This review aims to summarize discoveries surrounding the effects of early adversity on gene expression, emphasizing prenatal populations. First, we review findings from gene expression studies examining the effects of early adversity on various tissues known to contribute to prenatal health in adulthood. Next, we review several gene regulatory mechanisms thought to underlie differences in gene expression. Finally, we discuss potential implications for prenatal risk among early adversity-exposed mothers according to our current understanding of the biology that contributes to the development of prenatal syndromes.
Collapse
Affiliation(s)
| | - Steve W Cole
- Department of Psychiatry & Biobehavioral Sciences and Medicine, UCLA School of Medicine, Los Angeles, CA
| | - Lisa M Christian
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH
- The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
11
|
Abstract
The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut-brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut-brain axis. Further research is required to understand the complex mechanisms underlying gut-brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.
Collapse
|