1
|
Hill AT, Ford TC, Bailey NW, Lum JAG, Bigelow FJ, Oberman LM, Enticott PG. EEG During Dynamic Facial Emotion Processing Reveals Neural Activity Patterns Associated with Autistic Traits in Children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609816. [PMID: 39372765 PMCID: PMC11451616 DOI: 10.1101/2024.08.27.609816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Altered brain connectivity and atypical neural oscillations have been observed in autism, yet their relationship with autistic traits in non-clinical populations remains underexplored. Here, we employ electroencephalography (EEG) to examine functional connectivity, oscillatory power, and broadband aperiodic activity during a dynamic facial emotion processing (FEP) task in 101 typically developing children aged 4-12 years. We investigate associations between these electrophysiological measures of brain dynamics and autistic traits as assessed by the Social Responsiveness Scale, 2nd Edition (SRS-2). Our results revealed that increased FEP-related connectivity across theta (4-7 Hz) and beta (13-30 Hz) frequencies correlated positively with higher SRS-2 scores, predominantly in right-lateralized (theta) and bilateral (beta) cortical networks. Additionally, a steeper 1/f-like aperiodic slope (spectral exponent) across fronto-central electrodes was associated with higher SRS-2 scores. Greater aperiodic-adjusted theta and alpha oscillatory power further correlated with both higher SRS-2 scores and steeper aperiodic slopes. These findings underscore important links between FEP-related brain dynamics and autistic traits in typically developing children. Future work could extend these findings to assess these EEG-derived markers as potential mechanisms underlying behavioural difficulties in autism.
Collapse
Affiliation(s)
- Aron T. Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Talitha C. Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
- Centre for Human Psychopharmacology & Swinburne Neuroimaging, School of Health Sciences, Swinburne University of Technology, Melbourne, Australia
| | - Neil W. Bailey
- School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia
- Monarch Research Institute Monarch Mental Health Group, Sydney, New South Wales, Australia
| | - Jarrad A. G. Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Felicity J. Bigelow
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Lindsay M. Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Peter G. Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| |
Collapse
|
2
|
Thomson AR, Pasanta D, Arichi T, Puts NA. Neurometabolite differences in Autism as assessed with Magnetic Resonance Spectroscopy: A systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 162:105728. [PMID: 38796123 PMCID: PMC11602446 DOI: 10.1016/j.neubiorev.2024.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
1H-Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique that can be used to quantify the concentrations of metabolites in the brain in vivo. MRS findings in the context of autism are inconsistent and conflicting. We performed a systematic review and meta-analysis of MRS studies measuring glutamate and gamma-aminobutyric acid (GABA), as well as brain metabolites involved in energy metabolism (glutamine, creatine), neural and glial integrity (e.g. n-acetyl aspartate (NAA), choline, myo-inositol) and oxidative stress (glutathione) in autism cohorts. Data were extracted and grouped by metabolite, brain region and several other factors before calculation of standardised effect sizes. Overall, we find significantly lower concentrations of GABA and NAA in autism, indicative of disruptions to the balance between excitation/inhibition within brain circuits, as well as neural integrity. Further analysis found these alterations are most pronounced in autistic children and in limbic brain regions relevant to autism phenotypes. Additionally, we show how study outcome varies due to demographic and methodological factors , emphasising the importance of conforming with standardised consensus study designs and transparent reporting.
Collapse
Affiliation(s)
- Alice R Thomson
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK
| | - Tomoki Arichi
- MRC Centre for Neurodevelopmental Disorders, King's College London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, King's College London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, UK.
| |
Collapse
|
3
|
Salin P, Melon C, Chassain C, Gubellini P, Pages G, Pereira B, Le Fur Y, Durif F, Kerkerian-Le Goff L. Interhemispheric reactivity of the subthalamic nucleus sustains progressive dopamine neuron loss in asymmetrical parkinsonism. Neurobiol Dis 2024; 191:106398. [PMID: 38182075 DOI: 10.1016/j.nbd.2023.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive and asymmetrical degeneration of the nigrostriatal dopamine neurons and the unilateral presentation of the motor symptoms at onset, contralateral to the most impaired hemisphere. We previously developed a rat PD model that mimics these typical features, based on unilateral injection of a substrate inhibitor of excitatory amino acid transporters, L-trans-pyrrolidine-2,4-dicarboxylate (PDC), in the substantia nigra (SN). Here, we used this progressive model in a multilevel study (behavioral testing, in vivo 1H-magnetic resonance spectroscopy, slice electrophysiology, immunocytochemistry and in situ hybridization) to characterize the functional changes occurring in the cortico-basal ganglia-cortical network in an evolving asymmetrical neurodegeneration context and their possible contribution to the cell death progression. We focused on the corticostriatal input and the subthalamic nucleus (STN), two glutamate components with major implications in PD pathophysiology. In the striatum, glutamate and glutamine levels increased from presymptomatic stages in the PDC-injected hemisphere only, which also showed enhanced glutamatergic transmission and loss of plasticity at corticostriatal synapses assessed at symptomatic stage. Surprisingly, the contralateral STN showed earlier and stronger reactivity than the ipsilateral side (increased intraneuronal cytochrome oxidase subunit I mRNA levels; enhanced glutamate and glutamine concentrations). Moreover, its lesion at early presymptomatic stage halted the ongoing neurodegeneration in the PDC-injected SN and prevented the expression of motor asymmetry. These findings reveal the existence of endogenous interhemispheric processes linking the primary injured SN and the contralateral STN that could sustain progressive dopamine neuron loss, opening new perspectives for disease-modifying treatment of PD.
Collapse
Affiliation(s)
- Pascal Salin
- Aix-Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Carine Chassain
- University of Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; INRAE, AgroResonance Facility, F-63122 Saint-Genès-Champanelle, France
| | | | - Guilhem Pages
- INRAE, AgroResonance Facility, F-63122 Saint-Genès-Champanelle, France; INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | - Bruno Pereira
- University Hospital Clermont-Ferrand, Biostatisticis Unit (DRCI), Clermont-Ferrand, France
| | - Yann Le Fur
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Franck Durif
- University of Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France.
| | | |
Collapse
|
4
|
Dionísio A, Espírito A, Pereira AC, Mouga S, d'Almeida OC, Oliveira G, Castelo-Branco M. Neurochemical differences in core regions of the autistic brain: a multivoxel 1H-MRS study in children. Sci Rep 2024; 14:2374. [PMID: 38287121 PMCID: PMC10824733 DOI: 10.1038/s41598-024-52279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition which compromises various cognitive and behavioural domains. The understanding of the pathophysiology and molecular neurobiology of ASD is still an open critical research question. Here, we aimed to address ASD neurochemistry in the same time point at key regions that have been associated with its pathophysiology: the insula, hippocampus, putamen and thalamus. We conducted a multivoxel proton magnetic resonance spectroscopy (1H-MRS) study to non-invasively estimate the concentrations of total choline (GPC + PCh, tCho), total N-acetyl-aspartate (NAA + NAAG, tNAA) and Glx (Glu + Gln), presenting the results as ratios to total creatine while investigating replication for ratios to total choline as a secondary analysis. Twenty-two male children aged between 10 and 18 years diagnosed with ASD (none with intellectual disability, in spite of the expected lower IQ) and 22 age- and gender-matched typically developing (TD) controls were included. Aspartate ratios were significantly lower in the insula (tNAA/tCr: p = 0.010; tNAA/tCho: p = 0.012) and putamen (tNAA/tCr: p = 0.015) of ASD individuals in comparison with TD controls. The Glx ratios were significantly higher in the hippocampus of the ASD group (Glx/tCr: p = 0.027; Glx/tCho: p = 0.011). Differences in tNAA and Glx indices suggest that these metabolites might be neurochemical markers of region-specific atypical metabolism in ASD children, with a potential contribution for future advances in clinical monitoring and treatment.
Collapse
Affiliation(s)
- Ana Dionísio
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ana Espírito
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Andreia C Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Susana Mouga
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Centro de Desenvolvimento da Criança, Unidade de Neurodesenvolvimento e Autismo, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Otília C d'Almeida
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Guiomar Oliveira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Centro de Desenvolvimento da Criança, Unidade de Neurodesenvolvimento e Autismo, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Clinic of Pediatrics, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| |
Collapse
|
5
|
Yamada T, Watanabe T, Sasaki Y. Plasticity-stability dynamics during post-training processing of learning. Trends Cogn Sci 2024; 28:72-83. [PMID: 37858389 PMCID: PMC10842181 DOI: 10.1016/j.tics.2023.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Learning continues beyond the end of training. Post-training learning is supported by changes in plasticity and stability in the brain during both wakefulness and sleep. However, the lack of a unified measure for assessing plasticity and stability dynamics during training and post-training periods has limited our understanding of how these dynamics shape learning. Focusing primarily on procedural learning, we integrate work using behavioral paradigms and a recently developed measure, the excitatory-to-inhibitory (E/I) ratio, to explore the delicate balance between plasticity and stability and its relationship to post-training learning. This reveals plasticity-stability cycles during both wakefulness and sleep that enhance learning and protect it from new learning during post-training processing.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
6
|
Parrella NF, Hill AT, Dipnall LM, Loke YJ, Enticott PG, Ford TC. Inhibitory dysfunction and social processing difficulties in autism: A comprehensive narrative review. J Psychiatr Res 2024; 169:113-125. [PMID: 38016393 DOI: 10.1016/j.jpsychires.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
The primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) has a prominent role in regulating neural development and function, with disruption to GABAergic signalling linked to behavioural phenotypes associated with neurodevelopmental disorders, particularly autism. Such neurochemical disruption, likely resulting from diverse genetic and molecular mechanisms, particularly during early development, can subsequently affect the cellular balance of excitation and inhibition in neuronal circuits, which may account for the social processing difficulties observed in autism and related conditions. This comprehensive narrative review integrates diverse streams of research from several disciplines, including molecular neurobiology, genetics, epigenetics, and systems neuroscience. In so doing it aims to elucidate the relevance of inhibitory dysfunction to autism, with specific focus on social processing difficulties that represent a core feature of this disorder. Many of the social processing difficulties experienced in autism have been linked to higher levels of the excitatory neurotransmitter glutamate and/or lower levels of inhibitory GABA. While current therapeutic options for social difficulties in autism are largely limited to behavioural interventions, this review highlights the psychopharmacological studies that explore the utility of GABA modulation in alleviating such difficulties.
Collapse
Affiliation(s)
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lillian M Dipnall
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Early Life Epigenetics Group, Deakin University, Geelong, Australia
| | - Yuk Jing Loke
- Epigenetics Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Nisar S, Haris M. Neuroimaging genetics approaches to identify new biomarkers for the early diagnosis of autism spectrum disorder. Mol Psychiatry 2023; 28:4995-5008. [PMID: 37069342 PMCID: PMC11041805 DOI: 10.1038/s41380-023-02060-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023]
Abstract
Autism-spectrum disorders (ASDs) are developmental disabilities that manifest in early childhood and are characterized by qualitative abnormalities in social behaviors, communication skills, and restrictive or repetitive behaviors. To explore the neurobiological mechanisms in ASD, extensive research has been done to identify potential diagnostic biomarkers through a neuroimaging genetics approach. Neuroimaging genetics helps to identify ASD-risk genes that contribute to structural and functional variations in brain circuitry and validate biological changes by elucidating the mechanisms and pathways that confer genetic risk. Integrating artificial intelligence models with neuroimaging data lays the groundwork for accurate diagnosis and facilitates the identification of early diagnostic biomarkers for ASD. This review discusses the significance of neuroimaging genetics approaches to gaining a better understanding of the perturbed neurochemical system and molecular pathways in ASD and how these approaches can detect structural, functional, and metabolic changes and lead to the discovery of novel biomarkers for the early diagnosis of ASD.
Collapse
Affiliation(s)
- Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
8
|
Wang M, Xu D, Zhang L, Jiang H. Application of Multimodal MRI in the Early Diagnosis of Autism Spectrum Disorders: A Review. Diagnostics (Basel) 2023; 13:3027. [PMID: 37835770 PMCID: PMC10571992 DOI: 10.3390/diagnostics13193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder in children. Early diagnosis and intervention can remodel the neural structure of the brain and improve quality of life but may be inaccurate if based solely on clinical symptoms and assessment scales. Therefore, we aimed to analyze multimodal magnetic resonance imaging (MRI) data from the existing literature and review the abnormal changes in brain structural-functional networks, perfusion, neuronal metabolism, and the glymphatic system in children with ASD, which could help in early diagnosis and precise intervention. Structural MRI revealed morphological differences, abnormal developmental trajectories, and network connectivity changes in the brain at different ages. Functional MRI revealed disruption of functional networks, abnormal perfusion, and neurovascular decoupling associated with core ASD symptoms. Proton magnetic resonance spectroscopy revealed abnormal changes in the neuronal metabolites during different periods. Decreased diffusion tensor imaging signals along the perivascular space index reflected impaired glymphatic system function in children with ASD. Differences in age, subtype, degree of brain damage, and remodeling in children with ASD led to heterogeneity in research results. Multimodal MRI is expected to further assist in early and accurate clinical diagnosis of ASD through deep learning combined with genomics and artificial intelligence.
Collapse
Affiliation(s)
- Miaoyan Wang
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China; (M.W.); (D.X.)
| | - Dandan Xu
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China; (M.W.); (D.X.)
| | - Lili Zhang
- Department of Child Health Care, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China
| | - Haoxiang Jiang
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi 214000, China; (M.W.); (D.X.)
| |
Collapse
|
9
|
Oya M, Matsuoka K, Kubota M, Fujino J, Tei S, Takahata K, Tagai K, Yamamoto Y, Shimada H, Seki C, Itahashi T, Aoki YY, Ohta H, Hashimoto RI, Sugihara G, Obata T, Zhang MR, Suhara T, Nakamura M, Kato N, Takado Y, Takahashi H, Higuchi M. Increased glutamate and glutamine levels and their relationship to astrocytes and dopaminergic transmissions in the brains of adults with autism. Sci Rep 2023; 13:11655. [PMID: 37468523 DOI: 10.1038/s41598-023-38306-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Increased excitatory neuronal tones have been implicated in autism, but its mechanism remains elusive. The amplified glutamate signals may arise from enhanced glutamatergic circuits, which can be affected by astrocyte activation and suppressive signaling of dopamine neurotransmission. We tested this hypothesis using magnetic resonance spectroscopy and positron emission tomography scan with 11C-SCH23390 for dopamine D1 receptors in the anterior cingulate cortex (ACC). We enrolled 18 male adults with high-functioning autism and 20 typically developed (TD) male subjects. The autism group showed elevated glutamate, glutamine, and myo-inositol (mI) levels compared with the TD group (p = 0.045, p = 0.044, p = 0.030, respectively) and a positive correlation between glutamine and mI levels in the ACC (r = 0.54, p = 0.020). In autism and TD groups, ACC D1 receptor radioligand binding was negatively correlated with ACC glutamine levels (r = - 0.55, p = 0.022; r = - 0.58, p = 0.008, respectively). The enhanced glutamate-glutamine metabolism might be due to astroglial activation and the consequent reinforcement of glutamine synthesis in autistic brains. Glutamine synthesis could underly the physiological inhibitory control of dopaminergic D1 receptor signals. Our findings suggest a high neuron excitation-inhibition ratio with astrocytic activation in the etiology of autism.
Collapse
Affiliation(s)
- Masaki Oya
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kiwamu Matsuoka
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan.
- Department of Psychiatry, Nara Medical University, Kashihara-shi, Nara, Japan.
| | - Manabu Kubota
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto-shi, Kyoto, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
| | - Junya Fujino
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
| | - Shisei Tei
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto-shi, Kyoto, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
- Institute of Applied Brain Sciences, Waseda University, Tokorozawa-shi, Saitama, Japan
- School of Human and Social Sciences, Tokyo International University, Kawagoe-shi, Saitama, Japan
| | - Keisuke Takahata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kenji Tagai
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Yasuharu Yamamoto
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata-shi, Niigata, Japan
| | - Chie Seki
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
| | - Yuta Y Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
- Department of Psychiatry, School of Medicine, Showa University, Setagaya-ku, Tokyo, Japan
| | - Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Genichi Sugihara
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takayuki Obata
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba-shi, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba-shi, Chiba, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
- Kanagawa Psychiatric Center, Yokohama-shi, Kanagawa, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Setagaya-ku, Tokyo, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| |
Collapse
|
10
|
Yamada T, Watanabe T, Sasaki Y. Are sleep disturbances a cause or consequence of autism spectrum disorder? Psychiatry Clin Neurosci 2023; 77:377-385. [PMID: 36949621 PMCID: PMC10871071 DOI: 10.1111/pcn.13550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptoms such as atypical social communication, stereotyped behaviors, and restricted interests. One of the comorbid symptoms of individuals with ASD is sleep disturbance. There are two major hypotheses regarding the neural mechanism underlying ASD, i.e., the excitation/inhibition (E/I) imbalance and the altered neuroplasticity hypotheses. However, the pathology of ASD remains unclear due to inconsistent research results. This paper argues that sleep is a confounding factor, thus, must be considered when examining the pathology of ASD because sleep plays an important role in modulating the E/I balance and neuroplasticity in the human brain. Investigation of the E/I balance and neuroplasticity during sleep might enhance our understanding of the neural mechanisms of ASD. It may also lead to the development of neurobiologically informed interventions to supplement existing psychosocial therapies.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, 02912, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, 02912, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, 02912, USA
| |
Collapse
|
11
|
Abi-Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, Jutla A, Kotov R, Paulus MP, Rubio JM, Sanacora G, Veenstra-VanderWeele J, Krystal JH. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 2023; 22:236-262. [PMID: 37159365 PMCID: PMC10168176 DOI: 10.1002/wps.21078] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 05/11/2023] Open
Abstract
The field of psychiatry is hampered by a lack of robust, reliable and valid biomarkers that can aid in objectively diagnosing patients and providing individualized treatment recommendations. Here we review and critically evaluate the evidence for the most promising biomarkers in the psychiatric neuroscience literature for autism spectrum disorder, schizophrenia, anxiety disorders and post-traumatic stress disorder, major depression and bipolar disorder, and substance use disorders. Candidate biomarkers reviewed include various neuroimaging, genetic, molecular and peripheral assays, for the purposes of determining susceptibility or presence of illness, and predicting treatment response or safety. This review highlights a critical gap in the biomarker validation process. An enormous societal investment over the past 50 years has identified numerous candidate biomarkers. However, to date, the overwhelming majority of these measures have not been proven sufficiently reliable, valid and useful to be adopted clinically. It is time to consider whether strategic investments might break this impasse, focusing on a limited number of promising candidates to advance through a process of definitive testing for a specific indication. Some promising candidates for definitive testing include the N170 signal, an event-related brain potential measured using electroencephalography, for subgroup identification within autism spectrum disorder; striatal resting-state functional magnetic resonance imaging (fMRI) measures, such as the striatal connectivity index (SCI) and the functional striatal abnormalities (FSA) index, for prediction of treatment response in schizophrenia; error-related negativity (ERN), an electrophysiological index, for prediction of first onset of generalized anxiety disorder, and resting-state and structural brain connectomic measures for prediction of treatment response in social anxiety disorder. Alternate forms of classification may be useful for conceptualizing and testing potential biomarkers. Collaborative efforts allowing the inclusion of biosystems beyond genetics and neuroimaging are needed, and online remote acquisition of selected measures in a naturalistic setting using mobile health tools may significantly advance the field. Setting specific benchmarks for well-defined target application, along with development of appropriate funding and partnership mechanisms, would also be crucial. Finally, it should never be forgotten that, for a biomarker to be actionable, it will need to be clinically predictive at the individual level and viable in clinical settings.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Scott J Moeller
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Farzana Ali
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Amandeep Jutla
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Roman Kotov
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | | | - Jose M Rubio
- Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
- Feinstein Institute for Medical Research - Northwell, Manhasset, NY, USA
- Zucker Hillside Hospital - Northwell Health, Glen Oaks, NY, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Chemogenetic rectification of the inhibitory tone onto hippocampal neurons reverts autistic-like traits and normalizes local expression of estrogen receptors in the Ambra1+/- mouse model of female autism. Transl Psychiatry 2023; 13:63. [PMID: 36804922 PMCID: PMC9941573 DOI: 10.1038/s41398-023-02357-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Female, but not male, mice with haploinsufficiency for the proautophagic Ambra1 gene show an autistic-like phenotype associated with hippocampal circuits dysfunctions which include loss of parvalbuminergic interneurons (PV-IN), decrease in the inhibition/excitation ratio, and abundance of immature dendritic spines on CA1 pyramidal neurons. Given the paucity of data relating to female autism, we exploit the Ambra1+/- female model to investigate whether rectifying the inhibitory input onto hippocampal principal neurons (PN) rescues their ASD-like phenotype at both the systems and circuits level. Moreover, being the autistic phenotype exclusively observed in the female mice, we control the effect of the mutation and treatment on hippocampal expression of estrogen receptors (ER). Here we show that excitatory DREADDs injected in PV_Cre Ambra1+/- females augment the inhibitory input onto CA1 principal neurons (PN), rescue their social and attentional impairments, and normalize dendritic spine abnormalities and ER expression in the hippocampus. By providing the first evidence that hippocampal excitability jointly controls autistic-like traits and ER in a model of female autism, our findings identify an autophagy deficiency-related mechanism of hippocampal neural and hormonal dysregulation which opens novel perspectives for treatments specifically designed for autistic females.
Collapse
|
13
|
From bench to bedside: The mGluR5 system in people with and without Autism Spectrum Disorder and animal model systems. Transl Psychiatry 2022; 12:395. [PMID: 36127322 PMCID: PMC9489881 DOI: 10.1038/s41398-022-02143-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
The metabotropic glutamate receptor 5 (mGluR5) is a key regulator of excitatory (E) glutamate and inhibitory (I) γ-amino butyric acid (GABA) signalling in the brain. Despite the close functional ties between mGluR5 and E/I signalling, no-one has directly examined the relationship between mGluR5 and glutamate or GABA in vivo in the human brain of autistic individuals. We measured [18F] FPEB (18F-3-fluoro-5-[(pyridin-3-yl)ethynyl]benzonitrile) binding in 15 adults (6 with Autism Spectrum Disorder) using two regions of interest, the left dorsomedial prefrontal cortex and a region primarily composed of left striatum and thalamus. These two regions were mapped out using MEGA-PRESS voxels and then superimposed on reconstructed PET images. This allowed for direct comparison between mGluR5, GABA + and Glx. To better understand the molecular underpinnings of our results we used an autoradiography study of mGluR5 in three mouse models associated with ASD: Cntnap2 knockout, Shank3 knockout, and 16p11.2 deletion. Autistic individuals had significantly higher [18F] FPEB binding (t (13) = -2.86, p = 0.047) in the left striatum/thalamus region of interest as compared to controls. Within this region, there was a strong negative correlation between GABA + and mGluR5 density across the entire cohort (Pearson's correlation: r (14) = -0.763, p = 0.002). Cntnap2 KO mice had significantly higher mGlu5 receptor binding in the striatum (caudate-putamen) as compared to wild-type (WT) mice (n = 15, p = 0.03). There were no differences in mGluR5 binding for mice with the Shank3 knockout or 16p11.2 deletion. Given that Cntnap2 is associated with a specific striatal deficit of parvalbumin positive GABA interneurons and 'autistic' features, our findings suggest that an increase in mGluR5 in ASD may relate to GABAergic interneuron abnormalities.
Collapse
|
14
|
Rol de la terapia farmacológica en los trastornos del espectro autista. REVISTA MÉDICA CLÍNICA LAS CONDES 2022. [DOI: 10.1016/j.rmclc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Moxon-Emre I, Croarkin PE, Daskalakis ZJ, Blumberger DM, Lyon RE, Tani H, Truong P, Lai MC, Desarkar P, Sailasuta N, Szatmari P, Ameis SH. NAA/Glu Ratio Associated with Suicidal Ideation in Pilot Sample of Autistic Youth and Young Adults. Brain Sci 2022; 12:785. [PMID: 35741670 PMCID: PMC9220790 DOI: 10.3390/brainsci12060785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Suicidality is increased in autism spectrum disorder (ASD), yet effective interventions are lacking. Developing biologically based approaches for preventing and treating suicidality in ASD hinges on the identification of biomarkers of suicidal ideation (SI). Here, we assessed magnetic resonance spectroscopy (MRS) markers of glutamatergic neurotransmission in ASD youth and young adults. Twenty-eight ASD participants (16-33 years) underwent 1H-MRS, and metabolites were quantified using LCModel. N-acetylaspartate (NAA), glutamate (Glu), and the NAA/Glu ratio from the left dorsolateral prefrontal cortex were compared between ASD SI+ (n = 13) and ASD SI- (n = 15) participants. We found that ASD SI+ participants had a higher NAA/Glu ratio compared ASD SI- participants. The NAA/Glu ratio also predicted SI and significantly discriminated between ASD SI+/SI- participants. All analyses including NAA and Glu alone were non-significant. Here, we provide preliminary evidence for the importance of NAA/Glu in ASD with SI, with implications for biomarker discovery. Further mechanistic research into risk and interventional approaches to address SI in ASD are needed.
Collapse
Affiliation(s)
- Iska Moxon-Emre
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (I.M.-E.); (R.E.L.); (H.T.); (M.-C.L.); (P.S.)
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Division of Child and Adolescent Psychiatry, Mayo Clinic, Rochester, MN 55905, USA;
| | - Zafiris J. Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H1, Canada; (Z.J.D.); (D.M.B.); (P.D.)
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H1, Canada; (Z.J.D.); (D.M.B.); (P.D.)
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Rachael E. Lyon
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (I.M.-E.); (R.E.L.); (H.T.); (M.-C.L.); (P.S.)
| | - Hideaki Tani
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (I.M.-E.); (R.E.L.); (H.T.); (M.-C.L.); (P.S.)
| | - Peter Truong
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (P.T.); (N.S.)
| | - Meng-Chuan Lai
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (I.M.-E.); (R.E.L.); (H.T.); (M.-C.L.); (P.S.)
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Research Institute, Department of Psychiatry, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Pushpal Desarkar
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H1, Canada; (Z.J.D.); (D.M.B.); (P.D.)
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Napapon Sailasuta
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (P.T.); (N.S.)
| | - Peter Szatmari
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (I.M.-E.); (R.E.L.); (H.T.); (M.-C.L.); (P.S.)
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Research Institute, Department of Psychiatry, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Stephanie H. Ameis
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (I.M.-E.); (R.E.L.); (H.T.); (M.-C.L.); (P.S.)
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Research Institute, Department of Psychiatry, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
16
|
Maier S, Düppers AL, Runge K, Dacko M, Lange T, Fangmeier T, Riedel A, Ebert D, Endres D, Domschke K, Perlov E, Nickel K, Tebartz van Elst L. Increased prefrontal GABA concentrations in adults with autism spectrum disorders. Autism Res 2022; 15:1222-1236. [PMID: 35587691 DOI: 10.1002/aur.2740] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/28/2022] [Indexed: 11/10/2022]
Abstract
The excitatory-inhibitory imbalance hypothesis postulates dysregulation of the gamma-aminobutyric acid (GABA) and glutamate (Glu) neurotransmitter systems as a common underlying deficit in individuals with autism spectrum disorders (ASD). Previous studies suggest an important role of these systems in the pathophysiology of ASD, including a study of our group reporting decreased glutamate concentrations in the pregenual anterior cingulate cortex (ACC) of adults with ASD. The aim of this study was to replicate our previous findings of impaired glutamate metabolism in ASD in a new sample and to additionally quantify GABA in the ACC and dorsolateral prefrontal cortex (dlPFC). Concentrations of GABA and glutamate-glutamine (Glx; combined glutamate and glutamine signal) were quantified in the ACC and dlPFC of 43 adults with ASD and 43 neurotypical controls (NTC) by magnetic resonance spectroscopy (MRS). The ASD group showed increased absolute GABA concentrations and elevated GABA/creatine ratios in the left dlPFC compared to NTC, while no group differences were detected in the pregenual and dorsal ACC. Previous findings of altered Glx concentration in the pregenual ACC of the ASD group could not be replicated. Regarding Glx concentrations and Glx/creatine ratios, there were no significant differences in the dlPFC and ACC either. The study supports the hypothesis of an altered GABA and glutamate equilibrium, indicating an imbalance between excitatory and inhibitory metabolism in ASD patients. However, inconsistent results across studies and brain regions suggest a complex underlying phenomenon. LAY SUMMARY: Adults of the autism spectrum exhibit elevated levels of the inhibitory neurotransmitter GABA in the left dorsolateral prefrontal cortex. This finding supports the hypothesis of an imbalance between excitatory and inhibitory equilibrium in patients with autism spectrum disorders.
Collapse
Affiliation(s)
- Simon Maier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Kimon Runge
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Dacko
- Department of Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Lange
- Department of Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Fangmeier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Riedel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Luzerner Psychiatrie, Ambulante Dienste, Luzern, Switzerland
| | - Dieter Ebert
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Evgeniy Perlov
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Clinic for Psychiatry Luzern, Hospital St. Urban, St. Urban, Switzerland
| | - Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Marcotulli D, Davico C, Somà A, Teghille G, Ravaglia G, Amianto F, Ricci F, Puccinelli MP, Spada M, Vitiello B. Association between EEG Paroxysmal Abnormalities and Levels of Plasma Amino Acids and Urinary Organic Acids in Children with Autism Spectrum Disorder. CHILDREN (BASEL, SWITZERLAND) 2022; 9:540. [PMID: 35455584 PMCID: PMC9031943 DOI: 10.3390/children9040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
Abstract
Abnormalities in the plasma amino acid and/or urinary organic acid profile have been reported in autism spectrum disorder (ASD). An imbalance between excitatory and inhibitory neuronal activity has been proposed as a mechanism to explain dysfunctional brain networks in ASD, as also suggested by the increased risk of epilepsy in this disorder. This study explored the possible association between presence of EEG paroxysmal abnormalities and the metabolic profile of plasma amino acids and urinary organic acids in children with ASD. In a sample of 55 children with ASD (81.8% male, mean age 53.67 months), EEGs were recorded, and 24 plasma amino acids and 56 urinary organic acids analyzed. EEG epileptiform discharges were found in 36 (65%) children. A LASSO regression, adjusted by age and sex, was applied to evaluate the association of plasma amino acids and urinary organic acids profiles with the presence of EEG epileptiform discharges. Plasma levels of threonine (THR) (coefficient = -0.02, p = 0.04) and urinary concentration of 3-Hydroxy-3-Methylglutaric acid (HMGA) (coefficient = 0.04, p = 0.02) were found to be associated with the presence of epileptiform discharges. These results suggest that altered redox mechanisms might be linked to epileptiform brain activity in ASD.
Collapse
Affiliation(s)
- Daniele Marcotulli
- Section of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (D.M.); (A.S.); (G.T.); (G.R.); (F.R.); (B.V.)
| | - Chiara Davico
- Section of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (D.M.); (A.S.); (G.T.); (G.R.); (F.R.); (B.V.)
| | - Alessandra Somà
- Section of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (D.M.); (A.S.); (G.T.); (G.R.); (F.R.); (B.V.)
| | - Guido Teghille
- Section of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (D.M.); (A.S.); (G.T.); (G.R.); (F.R.); (B.V.)
| | - Giorgio Ravaglia
- Section of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (D.M.); (A.S.); (G.T.); (G.R.); (F.R.); (B.V.)
| | - Federico Amianto
- Department of Neuroscience, University of Turin, 10126 Turin, Italy;
| | - Federica Ricci
- Section of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (D.M.); (A.S.); (G.T.); (G.R.); (F.R.); (B.V.)
| | - Maria Paola Puccinelli
- Department of Clinical Biochemistry, “Baldi e Riberi” Laboratory, AOU Città della Salute e della Scienza di Torino, 10126 Turin, Italy;
| | - Marco Spada
- Section of Pediatrics, Department of Public Health and Pediatric Sciences, University of Torino, 10126 Turin, Italy;
| | - Benedetto Vitiello
- Section of Child and Adolescent Neuropsychiatry, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; (D.M.); (A.S.); (G.T.); (G.R.); (F.R.); (B.V.)
| |
Collapse
|
18
|
Cooke J, Molloy CJ, Cáceres ASJ, Dinneen T, Bourgeron T, Murphy D, Gallagher L, Loth E. The Synaptic Gene Study: Design and Methodology to Identify Neurocognitive Markers in Phelan-McDermid Syndrome and NRXN1 Deletions. Front Neurosci 2022; 16:806990. [PMID: 35250452 PMCID: PMC8894872 DOI: 10.3389/fnins.2022.806990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/26/2022] [Indexed: 11/26/2022] Open
Abstract
Synaptic gene conditions, i.e., “synaptopathies,” involve disruption to genes expressed at the synapse and account for between 0.5 and 2% of autism cases. They provide a unique entry point to understanding the molecular and biological mechanisms underpinning autism-related phenotypes. Phelan-McDermid Syndrome (PMS, also known as 22q13 deletion syndrome) and NRXN1 deletions (NRXN1ds) are two synaptopathies associated with autism and related neurodevelopmental disorders (NDDs). PMS often incorporates disruption to the SHANK3 gene, implicated in excitatory postsynaptic scaffolding, whereas the NRXN1 gene encodes neurexin-1, a presynaptic cell adhesion protein; both are implicated in trans-synaptic signaling in the brain. Around 70% of individuals with PMS and 43–70% of those with NRXN1ds receive a diagnosis of autism, suggesting that alterations in synaptic development may play a crucial role in explaining the aetiology of autism. However, a substantial amount of heterogeneity exists between conditions. Most individuals with PMS have moderate to profound intellectual disability (ID), while those with NRXN1ds have no ID to severe ID. Speech abnormalities are common to both, although appear more severe in PMS. Very little is currently known about the neurocognitive underpinnings of phenotypic presentations in PMS and NRXN1ds. The Synaptic Gene (SynaG) study adopts a gene-first approach and comprehensively assesses these two syndromic forms of autism. The study compliments preclinical efforts within AIMS-2-TRIALS focused on SHANK3 and NRXN1. The aims of the study are to (1) establish the frequency of autism diagnosis and features in individuals with PMS and NRXN1ds, (2) to compare the clinical profile of PMS, NRXN1ds, and individuals with ‘idiopathic’ autism (iASD), (3) to identify mechanistic biomarkers that may account for autistic features and/or heterogeneity in clinical profiles, and (4) investigate the impact of second or multiple genetic hits on heterogeneity in clinical profiles. In the current paper we describe our methodology for phenotyping the sample and our planned comparisons, with information on the necessary adaptations made during the global COVID-19 pandemic. We also describe the demographics of the data collected thus far, including 25 PMS, 36 NRXN1ds, 33 iASD, and 52 NTD participants, and present an interim analysis of autistic features and adaptive functioning.
Collapse
Affiliation(s)
- Jennifer Cooke
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- *Correspondence: Jennifer Cooke,
| | - Ciara J. Molloy
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Antonia San José Cáceres
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Fundación para la Investigación Biomédica del Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Madrid, Spain
| | - Thomas Dinneen
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Declan Murphy
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Eva Loth
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Eva Loth,
| |
Collapse
|
19
|
Bharadwaj H, Mamashli F, Khan S, Singh R, Joseph RM, Losh A, Pawlyszyn S, McGuiggan NM, Graham S, Hämäläinen MS, Kenet T. Cortical signatures of auditory object binding in children with autism spectrum disorder are anomalous in concordance with behavior and diagnosis. PLoS Biol 2022; 20:e3001541. [PMID: 35167585 PMCID: PMC8884487 DOI: 10.1371/journal.pbio.3001541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/28/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Organizing sensory information into coherent perceptual objects is fundamental to everyday perception and communication. In the visual domain, indirect evidence from cortical responses suggests that children with autism spectrum disorder (ASD) have anomalous figure-ground segregation. While auditory processing abnormalities are common in ASD, especially in environments with multiple sound sources, to date, the question of scene segregation in ASD has not been directly investigated in audition. Using magnetoencephalography, we measured cortical responses to unattended (passively experienced) auditory stimuli while parametrically manipulating the degree of temporal coherence that facilitates auditory figure-ground segregation. Results from 21 children with ASD (aged 7-17 years) and 26 age- and IQ-matched typically developing children provide evidence that children with ASD show anomalous growth of cortical neural responses with increasing temporal coherence of the auditory figure. The documented neurophysiological abnormalities did not depend on age, and were reflected both in the response evoked by changes in temporal coherence of the auditory scene and in the associated induced gamma rhythms. Furthermore, the individual neural measures were predictive of diagnosis (83% accuracy) and also correlated with behavioral measures of ASD severity and auditory processing abnormalities. These findings offer new insight into the neural mechanisms underlying auditory perceptual deficits and sensory overload in ASD, and suggest that temporal-coherence-based auditory scene analysis and suprathreshold processing of coherent auditory objects may be atypical in ASD.
Collapse
Affiliation(s)
- Hari Bharadwaj
- Department of Speech, Language, & Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Fahimeh Mamashli
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Sheraz Khan
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Ravinderjit Singh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Robert M. Joseph
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ainsley Losh
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Stephanie Pawlyszyn
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nicole M. McGuiggan
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Steven Graham
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Matti S. Hämäläinen
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Tal Kenet
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| |
Collapse
|
20
|
Hangel G, Niess E, Lazen P, Bednarik P, Bogner W, Strasser B. Emerging methods and applications of ultra-high field MR spectroscopic imaging in the human brain. Anal Biochem 2022; 638:114479. [PMID: 34838516 DOI: 10.1016/j.ab.2021.114479] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) of the brain enables insights into the metabolic changes and fluxes in diseases such as tumors, multiple sclerosis, epilepsy, or hepatic encephalopathy, as well as insights into general brain functionality. However, the routine application of MRSI is mostly hampered by very low signal-to-noise ratios (SNR) due to the low concentrations of metabolites, about 10000 times lower than water. Furthermore, MRSI spectra have a dense information content with many overlapping metabolite resonances, especially for proton MRSI. MRI scanners at ultra-high field strengths, like 7 T or above, offer the opportunity to increase SNR, as well as the separation between resonances, thus promising to solve both challenges. Yet, MRSI at ultra-high field strengths is challenged by decreased B0- and B1-homogeneity, shorter T2 relaxation times, stronger chemical shift displacement errors, and aggravated lipid contamination. Therefore, to capitalize on the advantages of ultra-high field strengths, these challenges must be overcome. This review focuses on the challenges MRSI of the human brain faces at ultra-high field strength, as well as the possible applications to this date.
Collapse
Affiliation(s)
- Gilbert Hangel
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Austria
| | - Eva Niess
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Philipp Lazen
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Petr Bednarik
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Bernhard Strasser
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
21
|
Nair N, Hegarty JP, Cirstea CM, Gu M, Appling CB, Beversdorf DQ. Relationship Between MR Spectroscopy-Detected Glutamatergic Neurometabolites and Changes in Social Behaviors in a Pilot Open-Label Trial of Memantine for Adults With Autism Spectrum Disorder. Front Psychiatry 2022; 13:898006. [PMID: 35935413 PMCID: PMC9355704 DOI: 10.3389/fpsyt.2022.898006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The neurobiology underlying ASD is largely unknown but altered neural excitability/inhibitory ratios have been reported. Memantine is an N-methyl-D-aspartate (NMDA) glutamatergic antagonist studied for the treatment of core ASD symptoms, with mixed results. We examined whether glutamatergic levels were associated with and predicted response to memantine in an exploratory pilot study. METHODS Ten adult participants with ASD underwent proton magnetic resonance spectroscopy (1H-MRS) imaging at baseline and behavioral assessments before and after 12-weeks of open-label memantine. Post-treatment scores on Clinical Global Impressions-Improvement (CGI-I) for social interaction were the primary outcome measure, and scores on the Social Responsiveness Scale (SRS) were included as a secondary outcome. LCModel was used to quantify the concentrations of Point RESolved Spectroscopy-detected glutamate+glutamine (Glx) (and other neurometabolites, i.e., N-acetylaspartate, NAA; creatine+phosphocreatine, Cr+PCr, and myo-inositol, Ins), within the left dorsolateral prefrontal cortex (LDLPFC) and right (R) posterolateral cerebellum. SPM was used to perform brain tissue segmentation within the spectroscopic voxels. CGI-I scores post-treatment were used to classify the participants into two groups, responders (scores 1-3; n = 5) and non-responders (scores 4-7, or withdrew due to increase behaviors; n = 5). Independent samples t-tests, partial correlations and linear hierarchical regression models (SPSS) were used to determine between-group differences in neurometabolite concentrations and associations between neurometabolites and behavioral scores. RESULTS Responders and non-responders did not significantly differ in Glx levels in any region of interest, but differed in NAA levels in LDLPFC (higher in responders vs. non-responders). Although changes in CGI-I social scores were not correlated with Glx in any region of interest, the linear hierarchical regression did reveal that Glx and Ins levels in LDLPFC were predictors of post-treatment CGI-I social scores. Changes in SRS scores were correlated with baseline Cr+PCr levels in the LDLPFC. DISCUSSION Our pilot data suggest that baseline Glx, a marker of glutamatergic neurotransmission, did not directly predict response to memantine for social outcomes in adults with ASD. However, interactions between Glx and the neurometabolite associated with glial integrity (Ins) may help predict treatment response. Further, those with highest baseline NAA, a putative neuronal marker, and Cr+pCr, a brain energy metabolism marker, were the best responders. These preliminary results may explain some of the mixed results reported in previous memantine trials in ASD. Future studies will need to examine these results in a larger sample.
Collapse
Affiliation(s)
- Neetu Nair
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, United States.,Department of Psychiatry, University of Missouri, Columbia, MO, United States
| | - John Patrick Hegarty
- Department of Psychiatry, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Carmen Mihaela Cirstea
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, United States
| | - Meng Gu
- Department of Psychiatry, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Carrina Brooke Appling
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, United States
| | - David Quentin Beversdorf
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, United States.,William and Nancy Thompson Endowed Chair in Radiology, Departments of Radiology, Neurology and Psychological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
22
|
Schiavi S, La Rosa P, Petrillo S, Carbone E, D'Amico J, Piemonte F, Trezza V. N-Acetylcysteine Mitigates Social Dysfunction in a Rat Model of Autism Normalizing Glutathione Imbalance and the Altered Expression of Genes Related to Synaptic Function in Specific Brain Areas. Front Psychiatry 2022; 13:851679. [PMID: 35280167 PMCID: PMC8916240 DOI: 10.3389/fpsyt.2022.851679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
Prenatal exposure to valproic acid (VPA) is a risk factor for autism spectrum disorder (ASD) in humans and it induces autistic-like behaviors in rodents. Imbalances between GABAergic and glutamatergic neurotransmission and increased oxidative stress together with altered glutathione (GSH) metabolism have been hypothesized to play a role in both VPA-induced embriotoxicity and in human ASD. N-acetylcysteine (NAC) is an antioxidant precursor of glutathione and a modulator of glutamatergic neurotransmission that has been tested in ASD, although the clinical studies currently available provided controversial results. Here, we explored the effects of repeated NAC (150 mg/kg) administration on core autistic-like features and altered brain GSH metabolism in the VPA (500 mg/kg) rat model of ASD. Furthermore, we measured the mRNA expression of genes encoding for scaffolding and transcription regulation proteins, as well as the subunits of NMDA and AMPA receptors and metabotropic glutamate receptors mGLUR1 and mGLUR5 in brain areas that are relevant to ASD. NAC administration ameliorated the social deficit displayed by VPA-exposed rats in the three-chamber test, but not their stereotypic behavior in the hole board test. Furthermore, NAC normalized the altered GSH levels displayed by these animals in the hippocampus and nucleus accumbens, and it partially rescued the altered expression of post-synaptic terminal network genes found in VPA-exposed rats, such as NR2a, MGLUR5, GLUR1, and GLUR2 in nucleus accumbens, and CAMK2, NR1, and GLUR2 in cerebellum. These data indicate that NAC treatment selectively mitigates the social dysfunction displayed by VPA-exposed rats normalizing GSH imbalance and reestablishing the expression of genes related to synaptic function in a brain region-specific manner. Taken together, these data contribute to clarify the behavioral impact of NAC in ASD and the molecular mechanisms that underlie its effects.
Collapse
Affiliation(s)
- Sara Schiavi
- Department of Science, University "Roma Tre", Rome, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University, Rome, Italy
| | - Sara Petrillo
- Neuromuscular and Neurodegenerative Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emilia Carbone
- Department of Science, University "Roma Tre", Rome, Italy
| | - Jessica D'Amico
- Neuromuscular and Neurodegenerative Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fiorella Piemonte
- Neuromuscular and Neurodegenerative Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viviana Trezza
- Department of Science, University "Roma Tre", Rome, Italy
| |
Collapse
|
23
|
Bernardino I, Dionísio A, Violante IR, Monteiro R, Castelo-Branco M. Motor Cortex Excitation/Inhibition Imbalance in Young Adults With Autism Spectrum Disorder: A MRS-TMS Approach. Front Psychiatry 2022; 13:860448. [PMID: 35492696 PMCID: PMC9046777 DOI: 10.3389/fpsyt.2022.860448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Excitatory/inhibitory imbalance has been suggested as a neurobiological substrate of the cognitive symptomatology in Autism Spectrum Disorder (ASD). Studies using magnetic resonance spectroscopy (MRS) attempted to characterize GABA and Glutamate brain levels in ASD. However mixed findings have been reported. Here, we characterize both neurochemical and physiological aspects of GABA system in ASD by implementing a more comprehensive approach combining MRS and transcranial magnetic stimulation (TMS). A group of 16 young ASD adults and a group of 17 controls participated in this study. We employed one MRS session to assess motor cortex GABA+ and Glutamate+Glutamine (Glx) levels using MEGAPRESS and PRESS sequences, respectively. Additionally, a TMS experiment was implemented including paired-pulse (SICI, ICF and LICI), input-output curve and cortical silent period to probe cortical excitability. Our results showed a significantly increased Glx, with unchanged GABA+ levels in the ASD group compared with controls. Single TMS measures did not differ between groups, although exploratory within-group analysis showed impaired inhibition in SICI5ms, in ASD. Importantly, we observed a correlation between GABA levels and measures of the input-output TMS recruitment curve (slope and MEP amplitude) in the control group but not in ASD, as further demonstrated by direct between group comparisons. In this exploratory study, we found evidence of increased Glx levels which may contribute to ASD excitatory/inhibitory imbalance while highlighting the relevance of conducting further larger-scale studies to investigate the GABA system from complementary perspectives, using both MRS and TMS techniques.
Collapse
Affiliation(s)
- Inês Bernardino
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Ana Dionísio
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Inês R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Raquel Monteiro
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Institute of Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
24
|
A single- and paired-pulse TMS-EEG investigation of the N100 and long interval cortical inhibition in autism spectrum disorder. Brain Stimul 2021; 15:229-232. [PMID: 34973461 DOI: 10.1016/j.brs.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022] Open
|
25
|
Moxon-Emre I, Daskalakis ZJ, Blumberger DM, Croarkin PE, Lyon RE, Forde NJ, Tani H, Truong P, Lai MC, Desarkar P, Sailasuta N, Szatmari P, Ameis SH. Modulation of Dorsolateral Prefrontal Cortex Glutamate/Glutamine Levels Following Repetitive Transcranial Magnetic Stimulation in Young Adults With Autism. Front Neurosci 2021; 15:711542. [PMID: 34690671 PMCID: PMC8527173 DOI: 10.3389/fnins.2021.711542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
Altered excitatory and inhibitory neurotransmission has been implicated in autism spectrum disorder (ASD). Interventions using repetitive transcranial magnetic stimulation (rTMS) to enhance or inhibit cortical excitability are under study for various targets, though the mechanistic effects of rTMS have yet to be examined in ASD. Here, we examined whether an excitatory rTMS treatment course modulates glutamatergic (Glx) or γ-aminobutyric acid (GABA) metabolite levels in emerging adults with ASD. Twenty-eight participants with ASD and executive function impairment [23.3 ± 4.69 years; seven-female] underwent two magnetic resonance spectroscopy (MRS) scans of the left dorsolateral prefrontal cortex (DLPFC). MRS scans were acquired before and after participants with ASD were randomized to receive a 20-session course of active or sham rTMS to the DLPFC. Baseline MRS data was available for 19 typically developing controls [23.8 ± 4.47 years; six-female]. Metabolite levels for Glx and GABA+ were compared between ASD and control groups, at baseline, and metabolite level change, pre-to-post-rTMS treatment, was compared in ASD participants that underwent active vs. sham rTMS. Absolute change in Glx was greater in the active vs. sham-rTMS group [F(1,19) = 6.54, p = 0.02], though the absolute change in GABA+ did not differ between groups. We also examined how baseline metabolite levels related to pre/post-rTMS metabolite level change, in the active vs. sham groups. rTMS group moderated the relation between baseline Glx and pre-to-post-rTMS Glx change, such that baseline Glx predicted Glx change in the active-rTMS group only [b = 1.52, SE = 0.32, t(18) = 4.74, p < 0.001]; Glx levels increased when baseline levels were lower, and decreased when baseline levels were higher. Our results indicate that an interventional course of excitatory rTMS to the DLPFC may modulate local Glx levels in emerging adults with ASD, and align with prior reports of glutamatergic alterations following rTMS. Interventional studies that track glutamatergic markers may provide mechanistic insights into the therapeutic potential of rTMS in ASD. Clinical Trial Registration:Clinicaltrials.gov (ID: NCT02311751), https://clinicaltrials.gov/ct2/show/NCT02311751?term=ameis&rank=1; NCT02311751.
Collapse
Affiliation(s)
- Iska Moxon-Emre
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Paul E Croarkin
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Rachael E Lyon
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Natalie J Forde
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Hideaki Tani
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Truong
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Meng-Chuan Lai
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Pushpal Desarkar
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Napapon Sailasuta
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Szatmari
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephanie H Ameis
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
26
|
Sapey-Triomphe LA, Temmerman J, Puts NAJ, Wagemans J. Prediction learning in adults with autism and its molecular correlates. Mol Autism 2021; 12:64. [PMID: 34615532 PMCID: PMC8493731 DOI: 10.1186/s13229-021-00470-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022] Open
Abstract
Background According to Bayesian hypotheses, individuals with Autism Spectrum Disorder (ASD) have difficulties making accurate predictions about their environment. In particular, the mechanisms by which they assign precision to predictions or sensory inputs would be suboptimal in ASD. These mechanisms are thought to be mostly mediated by glutamate and GABA. Here, we aimed to shed light on prediction learning in ASD and on its neurobiological correlates. Methods Twenty-six neurotypical and 26 autistic adults participated in an associative learning task where they had to learn a probabilistic association between a tone and the rotation direction of two dots, in a volatile context. They also took part in magnetic resonance spectroscopy (MRS) measurements to quantify Glx (glutamate and glutamine), GABA + and glutathione in a low-level perceptual region (occipital cortex) and in a higher-level region involved in prediction learning (inferior frontal gyrus). Results Neurotypical and autistic adults had their percepts biased by their expectations, and this bias was smaller for individuals with a more atypical sensory sensitivity. Both groups were able to learn the association and to update their beliefs after a change in contingency. Interestingly, the percentage of correct predictions was correlated with the Glx/GABA + ratio in the occipital cortex (positive correlation) and in the right inferior frontal gyrus (negative correlation). In this region, MRS results also showed an increased concentration of Glx in the ASD group compared to the neurotypical group. Limitations We used a quite restrictive approach to select the MR spectra showing a good fit, which led to the exclusion of some MRS datasets and therefore to the reduction of the sample size for certain metabolites/regions. Conclusions Autistic adults appeared to have intact abilities to make predictions in this task, in contrast with the Bayesian hypotheses of ASD. Yet, higher ratios of Glx/GABA + in a frontal region were associated with decreased predictive abilities, and ASD individuals tended to have more Glx in this region. This neurobiological difference might contribute to suboptimal predictive mechanisms in ASD in certain contexts. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-021-00470-6.
Collapse
Affiliation(s)
- Laurie-Anne Sapey-Triomphe
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium. .,Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium.
| | - Joke Temmerman
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences and the Institute of Psychiatry, Psychology, and Neuroscience, Sackler Institute for Translational Neurodevelopment, King's College London, London, SE5 8AF, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE5 8AF, UK
| | - Johan Wagemans
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.,Leuven Autism Research (LAuRes), KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
27
|
Siegel-Ramsay JE, Romaniuk L, Whalley HC, Roberts N, Branigan H, Stanfield AC, Lawrie SM, Dauvermann MR. Glutamate and functional connectivity - support for the excitatory-inhibitory imbalance hypothesis in autism spectrum disorders. Psychiatry Res Neuroimaging 2021; 313:111302. [PMID: 34030047 DOI: 10.1016/j.pscychresns.2021.111302] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022]
Abstract
It has been proposed that the Glutamate (Glu) system is implicated in autism spectrum disorders (ASD) via an imbalance between excitatory and inhibitory brain circuits, which impacts on brain function. Here, we investigated the excitatory-inhibitory imbalance theory by measuring Glu-concentrations and the relationship with resting-state function. Nineteen adult males with ASD and 19 age and sex-matched healthy controls (HC) (23 - 58 years) underwent Proton Magnetic Resonance Spectroscopy of the dorsal anterior cingulate cortex (dACC) and resting-state functional Magnetic Resonance Imaging (fMRI). Glu and Glx concentrations were compared between groups. Seed-based functional connectivity was analyzed with a priori seeds of the right and left dACC. Finally, metabolite concentrations were related to functional connectivity coefficients and compared between both groups. Individuals with ASD showed significantly negative associations between increased Glx concentrations and reduced functional connectivity between the dACC and insular, limbic and parietal regions. In contrast, HC displayed a positive relationship between the same metabolite and connectivity measures. We provided new evidence to support the excitatory-inhibitory imbalance theory, where excitatory Glx concentrations were related to functional dysconnectivity in ASD. Future research is needed to investigate large-scale functional networks in association with both excitatory and inhibitory metabolites in subpopulations of ASD.
Collapse
Affiliation(s)
- Jennifer E Siegel-Ramsay
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom; Department of Psychiatry and Behavioral Science, University of Texas, Austin, United States
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil Roberts
- Centre for Reproductive Health (CRH), School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Holly Branigan
- School of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew C Stanfield
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom; Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria R Dauvermann
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
28
|
He JL, Oeltzschner G, Mikkelsen M, Deronda A, Harris AD, Crocetti D, Wodka EL, Mostofsky SH, Edden RAE, Puts NAJ. Region-specific elevations of glutamate + glutamine correlate with the sensory symptoms of autism spectrum disorders. Transl Psychiatry 2021; 11:411. [PMID: 34326312 PMCID: PMC8322079 DOI: 10.1038/s41398-021-01525-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Individuals on the autism spectrum are often reported as being hyper- and/or hyporeactive to sensory input. These sensory symptoms were one of the key observations that led to the development of the altered excitation-inhibition (E-I) model of autism, which posits that an increase ratio of excitatory to inhibitory signaling may explain certain phenotypical expressions of autism spectrum disorders (ASD). While there has been strong support for the altered E-I model of autism, much of the evidence has come from animal models. With regard to in-vivo human studies, evidence for altered E-I balance in ASD come from studies adopting magnetic resonance spectroscopy (MRS). Spectral-edited MRS can be used to provide measures of the levels of GABA + (GABA + macromolecules) and Glx (glutamate + glutamine) in specific brain regions as proxy markers of inhibition and excitation respectively. In the current study, we found region-specific elevations of Glx in the primary sensorimotor cortex (SM1) in ASD. There were no group differences of GABA+ in either the SM1 or thalamus. Higher levels of Glx were associated with more parent reported difficulties of sensory hyper- and hyporeactivity, as well as reduced feed-forward inhibition during tactile perception in children with ASD. Critically, the finding of elevated Glx provides strong empirical support for increased excitation in ASD. Our results also provide a clear link between Glx and the sensory symptoms of ASD at both behavioral and perceptual levels.
Collapse
Affiliation(s)
- Jason L He
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Alyssa Deronda
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Canada
| | - Deana Crocetti
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ericka L Wodka
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
29
|
Fetit R, Hillary RF, Price DJ, Lawrie SM. The neuropathology of autism: A systematic review of post-mortem studies of autism and related disorders. Neurosci Biobehav Rev 2021; 129:35-62. [PMID: 34273379 DOI: 10.1016/j.neubiorev.2021.07.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023]
Abstract
Post-mortem studies allow for the direct investigation of brain tissue in those with autism and related disorders. Several review articles have focused on aspects of post-mortem abnormalities but none has brought together the entire post-mortem literature. Here, we systematically review the evidence from post-mortem studies of autism, and of related disorders that present with autistic features. The literature consists of a small body of studies with small sample sizes, but several remarkably consistent findings are evident. Cortical layering is largely undisturbed, but there are consistent reductions in minicolumn numbers and aberrant myelination. Transcriptomics repeatedly implicate abberant synaptic, metabolic, proliferation, apoptosis and immune pathways. Sufficient replicated evidence is available to implicate non-coding RNA, aberrant epigenetic profiles, GABAergic, glutamatergic and glial dysfunction in autism pathogenesis. Overall, the cerebellum and frontal cortex are most consistently implicated, sometimes revealing distinct region-specific alterations. The literature on related disorders such as Rett syndrome, Fragile X and copy number variations (CNVs) predisposing to autism is particularly small and inconclusive. Larger studies, matched for gender, developmental stage, co-morbidities and drug treatment are required.
Collapse
Affiliation(s)
- Rana Fetit
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David J Price
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK; Patrick Wild Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK
| |
Collapse
|
30
|
Pretzsch CM, Floris DL, Voinescu B, Elsahib M, Mendez MA, Wichers R, Ajram L, Ivin G, Heasman M, Pretzsch E, Williams S, Murphy DGM, Daly E, McAlonan GM. Modulation of striatal functional connectivity differences in adults with and without autism spectrum disorder in a single-dose randomized trial of cannabidivarin. Mol Autism 2021; 12:49. [PMID: 34210360 PMCID: PMC8252312 DOI: 10.1186/s13229-021-00454-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) has a high cost to affected individuals and society, but treatments for core symptoms are lacking. To expand intervention options, it is crucial to gain a better understanding of potential treatment targets, and their engagement, in the brain. For instance, the striatum (caudate, putamen, and nucleus accumbens) plays a central role during development and its (atypical) functional connectivity (FC) may contribute to multiple ASD symptoms. We have previously shown, in the adult autistic and neurotypical brain, the non-intoxicating cannabinoid cannabidivarin (CBDV) alters the balance of striatal 'excitatory-inhibitory' metabolites, which help regulate FC, but the effects of CBDV on (atypical) striatal FC are unknown. METHODS To examine this in a small pilot study, we acquired resting state functional magnetic resonance imaging data from 28 men (15 neurotypicals, 13 ASD) on two occasions in a repeated-measures, double-blind, placebo-controlled study. We then used a seed-based approach to (1) compare striatal FC between groups and (2) examine the effect of pharmacological probing (600 mg CBDV/matched placebo) on atypical striatal FC in ASD. Visits were separated by at least 13 days to allow for drug washout. RESULTS Compared to the neurotypicals, ASD individuals had lower FC between the ventral striatum and frontal and pericentral regions (which have been associated with emotion, motor, and vision processing). Further, they had higher intra-striatal FC and higher putamenal FC with temporal regions involved in speech and language. In ASD, CBDV reduced hyperconnectivity to the neurotypical level. LIMITATIONS Our findings should be considered in light of several methodological aspects, in particular our participant group (restricted to male adults), which limits the generalizability of our findings to the wider and heterogeneous ASD population. CONCLUSION In conclusion, here we show atypical striatal FC with regions commonly associated with ASD symptoms. We further provide preliminary proof of concept that, in the adult autistic brain, acute CBDV administration can modulate atypical striatal circuitry towards neurotypical function. Future studies are required to determine whether modulation of striatal FC is associated with a change in ASD symptoms. TRIAL REGISTRATION clinicaltrials.gov, Identifier: NCT03537950. Registered May 25th, 2018-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03537950?term=NCT03537950&draw=2&rank=1 .
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
| | - Dorothea L. Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bogdan Voinescu
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Department of Liaison Psychiatry, Bristol Royal Infirmary, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Malka Elsahib
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
| | - Maria A. Mendez
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Robert Wichers
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Department of Psychiatry GGZ Geest, Amsterdam, The Netherlands
| | - Laura Ajram
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
- Medicines Discovery Catapult, Alderley Park, Alderley Edge, SK10 4TG Cheshire UK
| | - Glynis Ivin
- South London and Maudsley NHS Foundation Trust Pharmacy, London, UK
| | - Martin Heasman
- South London and Maudsley NHS Foundation Trust Pharmacy, London, UK
| | - Elise Pretzsch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Steven Williams
- Department of Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Declan G. M. Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
| | - Gráinne M. McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF UK
| |
Collapse
|
31
|
Novel treatments for autism spectrum disorder based on genomics and systems biology. Pharmacol Ther 2021; 230:107939. [PMID: 34174273 DOI: 10.1016/j.pharmthera.2021.107939] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder with a complex underlying genetic architecture. There are currently no known pharmacologic treatments for the core ASD symptoms of social deficits and restricted/ repetitive behavior. However, there are dozens of clinical trials currently underway that are testing the impact of novel and existing agents on core and associated symptoms in ASD. METHODS We present a narrative synthesis of the historical and contemporary challenges to drug discovery in ASD. We then provide an overview of novel treatments currently under investigation from a genomics and systems biology perspective. RESULTS Data driven network and cluster analyses suggest alterations in transcriptional regulation, chromatin remodelling, synaptic transmission, neuropeptide signalling, and/or immunological mechanisms may contribute to or underlie the development of ASD. Agents and upcoming trials targeting each of the above listed systems are reviewed. CONCLUSION Identifying effective pharmacologic treatments for the core and associated symptom domains in ASD will require further collaboration and innovation in the areas of outcome measurement, biomarker research, and genomics, as well as systematic efforts to identify and treat subgroups of individuals with ASD who may be differentially responsive to specific treatments.
Collapse
|
32
|
Maria YL, Price AN, Puts NAJ, Hughes EJ, Edden RAE, McAlonan GM, Arichi T, De Vita E. Simultaneous quantification of GABA, Glx and GSH in the neonatal human brain using magnetic resonance spectroscopy. Neuroimage 2021; 233:117930. [PMID: 33711485 PMCID: PMC8204265 DOI: 10.1016/j.neuroimage.2021.117930] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 11/23/2022] Open
Abstract
Balance between inhibitory and excitatory neurotransmitter systems and the protective role of the major antioxidant glutathione (GSH) are central to early healthy brain development. Disruption has been implicated in the early life pathophysiology of psychiatric disorders and neurodevelopmental conditions including Autism Spectrum Disorder. Edited magnetic resonance spectroscopy (MRS) methods such as HERMES have great potential for providing important new non-invasive insights into these crucial processes in human infancy. In this work, we describe a systematic approach to minimise the impact of specific technical challenges inherent to acquiring MRS data in a neonatal population, including automatic segmentation, full tissue-correction and optimised GABA+ fitting and consider the minimum requirements for a robust edited-MRS acquisition. With this approach we report for the first time simultaneous GABA+, Glx (glutamate + glutamine) and GSH concentrations in the neonatal brain (n = 18) in two distinct regions (thalamus and anterior cingulate cortex (ACC)) using edited MRS at 3T. The improved sensitivity provided by our method allows specific regional neurochemical differences to be identified including: significantly lower Glx and GSH ratios to total creatine in the thalamus compared to the ACC (p < 0.001 for both), and significantly higher GSH levels in the ACC following tissue-correction (p < 0.01). Furthermore, in contrast to adult GABA+ which can typically be accurately fitted with a single peak, all neonate spectra displayed a characteristic doublet GABA+ peak at 3 ppm, indicating a lower macromolecule (MM) contribution to the 3 ppm signal in neonates. Relatively high group-level variance shows the need to maximise voxel size/acquisition time in edited neonatal MRS acquisitions for robust estimation of metabolites. Application of this method to study how these levels and balance are altered by early-life brain injury or genetic risk can provide important new knowledge about the pathophysiology underlying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yanez Lopez Maria
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Emer J Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | - Grainne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom; NIHR-Maudsley Biomedical Research, King's College London, United Kingdom
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Enrico De Vita
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, Westminster Bridge Road, Lambeth Wing, 3rd Floor, London SE1 7EH, United Kingdom.
| |
Collapse
|
33
|
Luckhardt C, Boxhoorn S, Schütz M, Fann N, Freitag CM. Brain stimulation by tDCS as treatment option in Autism Spectrum Disorder-A systematic literature review. PROGRESS IN BRAIN RESEARCH 2021; 264:233-257. [PMID: 34167658 DOI: 10.1016/bs.pbr.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and interaction as well as stereotypical and repetitive behavior. Transcranial direct current stimulation (tDCS) has been proposed as a new intervention method in ASD with the potential to improve cognitive, motor and social communication abilities by targeting specific underlying neuronal alterations. Here, we report results of a systematic literature review on tDCS effects on EEG and behavioral outcomes, and discuss tDCS as treatment option for ASD. PsychInfo, PubMed, ScienceDirect, Web of Science, https://clinicaltrials.gov and the German Clinical Trials Register (Deutsches Register Klinischer Studien) were searched systematically for randomized, sham-controlled clinical trials of tDCS in individuals with ASD, and information regarding study designs and relevant results was extracted. Six eligible studies were identified. The dorsolateral prefrontal cortex (DLPFC) was targeted in four trials, with core ASD symptoms and working memory as outcome measures. One study targeted the primary motor cortex (M1) with motor skills as outcome, and one study targeted the temporoparietal junction (TPJ) with social communication skills as outcome measure. Comparison of the implemented study designs showed high methodological variability between studies regarding stimulation parameters, trial design and outcome measures. Study results indicate initial support for improved cognitive and social communication skills in ASD following tDCS stimulation. However, systematic and comparison studies on the best combination of stimulation intensity, duration, location as well as task related stimulation are necessary, before results can be translated into routine clinical application.
Collapse
Affiliation(s)
- Christina Luckhardt
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.
| | - Sara Boxhoorn
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Magdalena Schütz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Nikola Fann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
34
|
DeMayo MM, Harris AD, Song YJC, Pokorski I, Thapa R, Patel S, Ambarchi Z, Thomas EE, Hickie IB, Guastella AJ. Age-related parietal GABA alterations in children with autism spectrum disorder. Autism Res 2021; 14:859-872. [PMID: 33634588 DOI: 10.1002/aur.2487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
GABA is the primary inhibitory neurotransmitter in the brain, and is essential to the balance of cortical excitation and inhibition. Reductions in GABA are proposed to result in an overly excitatory cortex that may cause, or contribute to, symptoms of autism spectrum disorder (ASD). This study employed a cross-sectional design to explore GABA+ differences in ASD and the impact of age, comparing 4-12 year olds with ASD (N = 24) to typically developing children (N = 35). GABA+ concentration was measured using edited magnetic resonance spectroscopy in the left parietal lobe. This study used a mixed model to investigate group differences between children with ASD and typically developing children. There was a significant difference in GABA+ levels between the groups, a significant effect of age and interaction between age and diagnostic group. The ASD group showed an association between GABA+ and age, with GABA+ levels gradually increasing with age (r = 0.59, p = 0.003). Typically developing children did not show age-related change in GABA+ concentration (r = 0.09, p = 0.60). By the age of 9, children with ASD showed GABA+ levels that were comparable to their typically developing peers. This study suggests that children with ASD have initially lower levels of GABA+ in the left parietal lobe compared to typically developing children, and that these initially lower levels of GABA+ increase with age in ASD within this region. It is suggested that this developmental shift of GABA+ levels within the left parietal lobe provides a possible explanation for the previously found reductions in childhood that does not persist in adults. LAY SUMMARY: This study measured levels of GABA in the left parietal lobe using magnetic resonance spectroscopy in children with ASD and typically developing children. GABA levels were initially lower in the ASD group, and increased with age, while GABA did not change with age in the typically developing group. This suggests that alterations in GABA signaling may be associated with ASD in childhood. Autism Res 2021, 14: 859-872. © 2021 International Society for Autism Research, Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Marilena M DeMayo
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Yun Ju C Song
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Izabella Pokorski
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Rinku Thapa
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Shrujna Patel
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Zahava Ambarchi
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Emma E Thomas
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Ian B Hickie
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Adam J Guastella
- Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Pierce S, Kadlaskar G, Edmondson DA, McNally Keehn R, Dydak U, Keehn B. Associations between sensory processing and electrophysiological and neurochemical measures in children with ASD: an EEG-MRS study. J Neurodev Disord 2021; 13:5. [PMID: 33407072 PMCID: PMC7788714 DOI: 10.1186/s11689-020-09351-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is associated with hyper- and/or hypo-sensitivity to sensory input. Spontaneous alpha power, which plays an important role in shaping responsivity to sensory information, is reduced across the lifespan in individuals with ASD. Furthermore, an excitatory/inhibitory imbalance has also been linked to sensory dysfunction in ASD and has been hypothesized to underlie atypical patterns of spontaneous brain activity. The present study examined whether resting-state alpha power differed in children with ASD as compared to TD children, and investigated the relationships between alpha levels, concentrations of excitatory and inhibitory neurotransmitters, and atypical sensory processing in ASD. Methods Participants included thirty-one children and adolescents with ASD and thirty-one age- and IQ-matched typically developing (TD) participants. Resting-state electroencephalography (EEG) was used to obtain measures of alpha power. A subset of participants (ASD = 16; TD = 16) also completed a magnetic resonance spectroscopy (MRS) protocol in order to measure concentrations of excitatory (glutamate + glutamine; Glx) and inhibitory (GABA) neurotransmitters. Results Children with ASD evidenced significantly decreased resting alpha power compared to their TD peers. MRS estimates of GABA and Glx did not differ between groups with the exception of Glx in the temporal-parietal junction. Inter-individual differences in alpha power within the ASD group were not associated with region-specific concentrations of GABA or Glx, nor were they associated with sensory processing differences. However, atypically decreased Glx was associated with increased sensory impairment in children with ASD. Conclusions Although we replicated prior reports of decreased alpha power in ASD, atypically reduced alpha was not related to neurochemical differences or sensory symptoms in ASD. Instead, reduced Glx in the temporal-parietal cortex was associated with greater hyper-sensitivity in ASD. Together, these findings may provide insight into the neural underpinnings of sensory processing differences present in ASD. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-020-09351-0.
Collapse
Affiliation(s)
- Sarah Pierce
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Girija Kadlaskar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - David A Edmondson
- Cincinnati Children's Hospital Medical Center, Imaging Research Center, Cincinnati, OH, USA
| | - Rebecca McNally Keehn
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brandon Keehn
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA. .,Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
36
|
Iwabuchi T, Takahashi N, Nishimura T, Rahman MS, Harada T, Okumura A, Kuwabara H, Takagai S, Nomura Y, Matsuzaki H, Ozaki N, Tsuchiya KJ. Associations Among Maternal Metabolic Conditions, Cord Serum Leptin Levels, and Autistic Symptoms in Children. Front Psychiatry 2021; 12:816196. [PMID: 35185642 PMCID: PMC8851349 DOI: 10.3389/fpsyt.2021.816196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/31/2021] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Accumulating evidence has shown that maternal metabolic conditions, such as pre-pregnancy overweight, diabetes mellitus, and hypertensive disorders of pregnancy (HDP) are potential risk factors of autism spectrum disorder (ASD). However, it remains unclear how these maternal conditions lead to neurodevelopmental outcomes in the offspring, including autistic symptoms. Leptin, an adipokine that has pro-inflammatory effects and affects fetal neurodevelopment, is a candidate mediator of the association between maternal metabolic factors and an increased risk of ASD. However, whether prenatal exposure to leptin mediates the association between maternal metabolic conditions and autistic symptoms in children has not been investigated yet. METHODS This study investigated the associations between mothers' metabolic conditions (pre-pregnancy overweight, diabetes mellitus during or before pregnancy, and HDP), leptin concentrations in umbilical cord serum, and autistic symptoms among 762 children from an ongoing cohort study, using generalized structural equation modeling. We used the Social Responsive Scale, Second Edition (SRS-2) at 8-9 years old to calculate total T-scores. Additionally, we used the T-scores for two subdomains: Social Communication and Interaction (SCI) and Restricted Interests and Repetitive Behavior (RRB). RESULTS Umbilical cord leptin levels were associated with pre-pregnancy overweight [coefficient = 1.297, 95% confidence interval (CI) 1.081-1.556, p = 0.005] and diabetes mellitus (coefficient = 1.574, 95% CI 1.206-2.055, p = 0.001). Furthermore, leptin levels were significantly associated with SRS-2 total T-scores (coefficient = 1.002, 95% CI 1.000-1.004, p = 0.023), SCI scores (coefficient = 1.002, 95% CI 1.000-1.004, p = 0.020), and RRB scores (coefficient = 1.001, 95% CI 1.000-1.003, p = 0.044) in children. Associations between maternal metabolic factors and autistic symptoms were not significant. DISCUSSION The present study uncovered an association between cord leptin levels and autistic symptoms in children, while maternal metabolic conditions did not have an evident direct influence on the outcome. These results imply that prenatal pro-inflammatory environments affected by maternal metabolic conditions may contribute to the development of autistic symptoms in children. The findings warrant further investigation into the role of leptin in the development of autistic symptoms.
Collapse
Affiliation(s)
- Toshiki Iwabuchi
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Nagahide Takahashi
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Nishimura
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Md Shafiur Rahman
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taeko Harada
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akemi Okumura
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hitoshi Kuwabara
- United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Psychiatry, Saitama Medical University, Saitama, Japan
| | - Shu Takagai
- United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoko Nomura
- Queens College and Graduate Center, City University of New York, New York City, NY, United States
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan.,United Graduate School of Child Development, University of Fukui, Fukui, Japan
| | - Norio Ozaki
- Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.,United Graduate School of Child Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
37
|
Thalamic and prefrontal GABA concentrations but not GABA A receptor densities are altered in high-functioning adults with autism spectrum disorder. Mol Psychiatry 2021; 26:1634-1646. [PMID: 32376999 PMCID: PMC7644591 DOI: 10.1038/s41380-020-0756-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 03/11/2020] [Accepted: 04/23/2020] [Indexed: 01/04/2023]
Abstract
The gamma aminobutyric acid (GABA) neurotransmission system has been implicated in autism spectrum disorder (ASD). Molecular neuroimaging studies incorporating simultaneous acquisitions of GABA concentrations and GABAA receptor densities can identify objective molecular markers in ASD. We measured both total GABAA receptor densities by using [18F]flumazenil positron emission tomography ([18F]FMZ-PET) and GABA concentrations by using proton magnetic resonance spectroscopy (1H-MRS) in 28 adults with ASD and 29 age-matched typically developing (TD) individuals. Focusing on the bilateral thalami and the left dorsolateral prefrontal cortex (DLPFC) as our regions of interest, we found no differences in GABAA receptor densities between ASD and TD groups. However, 1H-MRS measurements revealed significantly higher GABA/Water (GABA normalized by water signal) in the left DLPFC of individuals with ASD than that of TD controls. Furthermore, a significant gender effect was observed in the thalami, with higher GABA/Water in males than in females. Hypothesizing that thalamic GABA correlates with ASD symptom severity in gender-specific ways, we stratified by diagnosis and investigated the interaction between gender and thalamic GABA/Water in predicting Autism-Spectrum Quotient (AQ) and Ritvo Autism Asperger's Diagnostic Scale-Revised (RAADS-R) total scores. We found that gender is a significant effect modifier of thalamic GABA/Water's relationship with AQ and RAADS-R scores for individuals with ASD, but not for TD controls. When we separated the ASD participants by gender, a negative correlation between thalamic GABA/Water and AQ was observed in male ASD participants. Remarkably, in female ASD participants, a positive correlation between thalamic GABA/Water and AQ was found.
Collapse
|
38
|
Kolodny T, Schallmo MP, Gerdts J, Edden RAE, Bernier RA, Murray SO. Concentrations of Cortical GABA and Glutamate in Young Adults With Autism Spectrum Disorder. Autism Res 2020; 13:1111-1129. [PMID: 32297709 DOI: 10.1002/aur.2300] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/02/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
The balance of excitation and inhibition in neural circuits is hypothesized to be increased in autism spectrum disorder, possibly mediated by altered signaling of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), yet empirical evidence in humans is inconsistent. We used edited magnetic resonance spectroscopy (MRS) to quantify signals associated with both GABA and the excitatory neurotransmitter glutamate in multiple regions of the sensory and sensorimotor cortex, including primary visual, auditory, and motor areas in adult individuals with autism and in neurotypical controls. Despite the strong a priori hypothesis of reduced GABA in autism spectrum disorder, we found no group differences in neurometabolite concentrations in any of the examined regions and no correlations of MRS measure with psychophysical visual sensitivity or autism symptomatology. We demonstrate high data quality that is comparable across groups, with a relatively large sample of well-characterized participants, and use Bayesian statistics to corroborate the lack of any group differences. We conclude that levels of GABA and Glx (glutamate, glutamine, and glutathione) in the sensory and sensorimotor cortex, as measured with MRS at 3T, are comparable in adults with autism and neurotypical individuals. Autism Res 2020, 13: 1111-1129. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: γ-Aminobutyric acid (GABA) and glutamate are the main inhibitory and excitatory neurotransmitters in the human brain, respectively, and their balanced interaction is necessary for neural function. Previous research suggests that the GABA and glutamate systems might be altered in autism. In this study, we used magnetic resonance spectroscopy to measure concentrations of these neurotransmitters in the sensory areas in the brains of young adults with autism. In contradiction to the common hypothesis of reduced GABA in autism, we demonstrate that concentrations of both GABA and glutamate, in all the brain regions examined, are comparable in individuals with autism and in neurotypical adults. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tamar Kolodny
- Department of Psychology, University of Washington, Seattle, Washington, USA
| | - Michael-Paul Schallmo
- Department of Psychology, University of Washington, Seattle, Washington, USA.,Department of Psychiatry and Behavioral Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Richard A E Edden
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Scott O Murray
- Department of Psychology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
39
|
Ford TC, Woods W, Enticott PG, Crewther DP. Cortical excitation-inhibition ratio mediates the effect of pre-attentive auditory processing deficits on interpersonal difficulties. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109769. [PMID: 31676468 DOI: 10.1016/j.pnpbp.2019.109769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/22/2019] [Accepted: 09/27/2019] [Indexed: 11/19/2022]
Abstract
Several lines of evidence identify aberrant excitatory-inhibitory neural processes across autism and schizophrenia spectrum disorders, particularly within the psychosocial domain. Such neural processes include increased excitatory glutamate and reduced inhibitory GABA concentrations, which may affect auditory pre-attentive processing as indexed by the mismatch negativity (MMN); thus, an excitation-inhibition imbalance might lead to aberrant MMN, which might in turn drive the relationship between the MMN and psychosocial difficulties. This research has the potential to enhance the neurochemical understanding of the relationship between electrophysiology (MMN) and behavioural/clinical measures (psychosocial difficulties). Thirty-eight adults (18 male, 18-40 years) completed the Schizotypal Personality Questionnaire (SPQ) and Autism-Spectrum Quotient (AQ). Glutamate and GABA concentrations in bilateral superior temporal cortex (STC) were quantified using proton magnetic resonance spectroscopy (1H-MRS) while auditory MMN to a duration deviant was measured with magnetoencephalography. Spearman correlations probed the relationships between STC glutamate/GABA ratios, MMN amplitude and latency, and AQ and SPQ dimensions. Mediation effects of glutamate/GABA ratios on the relationship between MMN and AQ-SPQ dimensions were probed using causal mediation analysis. Only SPQ-interpersonal and AQ-communication were significantly correlated with right hemisphere glutamate/GABA ratios and MMN latency (ps < 0.05), which were themselves correlated (p = .035). Two mediation models were investigated, with right MMN latency as predictor and SPQ-interpersonal and AQ-communication as outcome variables. Right STC glutamate/GABA ratios significantly mediated the relationship between MMN latency and SPQ-interpersonal scores, but only partially mediated the relationship between MMN latency and AQ-communication scores. These findings support the growing body of literature pointing toward an excitation-inhibition imbalance that is central to psychosocial functioning across multi-dimensional spectrum disorders, such as autism and schizophrenia, and provides neurochemical indicators of the processes that underlie psychosocial dysfunction.
Collapse
Affiliation(s)
- Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia; Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia.
| | - Will Woods
- Centre for Mental Health, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - David P Crewther
- Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Shen J, Shenkar D, An L, Tomar JS. Local and Interregional Neurochemical Associations Measured by Magnetic Resonance Spectroscopy for Studying Brain Functions and Psychiatric Disorders. Front Psychiatry 2020; 11:802. [PMID: 32848957 PMCID: PMC7432119 DOI: 10.3389/fpsyt.2020.00802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) studies have found significant correlations among neurometabolites (e.g., between glutamate and GABA) across individual subjects and altered correlations in neuropsychiatric disorders. In this article, we discuss neurochemical associations among several major neurometabolites which underpin these observations by MRS. We also illustrate the role of spectral editing in eliminating unwanted correlations caused by spectral overlapping. Finally, we describe the prospects of mapping macroscopic neurochemical associations across the brain and characterizing excitation-inhibition balance of neural networks using glutamate- and GABA-editing MRS imaging.
Collapse
Affiliation(s)
- Jun Shen
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Dina Shenkar
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Li An
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Jyoti Singh Tomar
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
41
|
Ewen JB, Sweeney JA, Potter WZ. Conceptual, Regulatory and Strategic Imperatives in the Early Days of EEG-Based Biomarker Validation for Neurodevelopmental Disabilities. Front Integr Neurosci 2019; 13:45. [PMID: 31496945 PMCID: PMC6712089 DOI: 10.3389/fnint.2019.00045] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Biological treatment development for syndromal neuropsychiatric conditions such as autism has seen slow progress for decades. Speeding drug discovery may result from the judicious development and application of biomarker measures of brain function to select patients for clinical trials, to confirm target engagement and to optimize drug dose. For neurodevelopmental disorders, electrophysiology (EEG) offers considerable promise because of its ability to monitor brain activity with high temporal resolution and its more ready application for pediatric populations relative to MRI. Here, we discuss conceptual/definitional issues related to biomarker development, discuss practical implementation issues, and suggest preliminary guidelines for validating EEG approaches as biomarkers with a context of use in neurodevelopmental disorder drug development.
Collapse
Affiliation(s)
- Joshua B. Ewen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - John A. Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, United States
| | - William Z. Potter
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
42
|
Ford TC, Crewther DP, Abu-Akel A. Psychosocial deficits across autism and schizotypal spectra are interactively modulated by excitatory and inhibitory neurotransmission. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2019; 24:364-373. [PMID: 31339349 DOI: 10.1177/1362361319866030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Continued human and animal research has strengthened evidence for aberrant excitatory-inhibitory neural processes underlying autism and schizophrenia spectrum disorder psychopathology, particularly psychosocial functioning, in clinical and nonclinical populations. We investigated the extent to which autistic traits and schizotypal dimensions were modulated by the interactive relationship between excitatory glutamate and inhibitory GABA neurotransmitter concentrations in the social processing area of the superior temporal cortex using proton magnetic resonance spectroscopy. In total, 38 non-clinical participants (20 females; age range = 18-35 years, mean (standard deviation) = 23.22 (5.52)) completed the autism spectrum quotient and schizotypal personality questionnaire, and underwent proton magnetic resonance spectroscopy to quantify glutamate and GABA concentrations in the right and left superior temporal cortex. Regression analyses revealed that glutamate and GABA interactively modulated autistic social skills and schizotypal interpersonal features (pcorr < 0.05), such that those with high right superior temporal cortex glutamate but low GABA concentrations exhibited poorer social and interpersonal skills. These findings evidence an excitation-inhibition imbalance that is specific to psychosocial features across the autism and schizophrenia spectra.
Collapse
Affiliation(s)
- Talitha C Ford
- Deakin University, Australia.,Swinburne University of Technology, Australia
| | | | | |
Collapse
|
43
|
Masuda F, Nakajima S, Miyazaki T, Yoshida K, Tsugawa S, Wada M, Ogyu K, Croarkin PE, Blumberger DM, Daskalakis ZJ, Mimura M, Noda Y. Motor cortex excitability and inhibitory imbalance in autism spectrum disorder assessed with transcranial magnetic stimulation: a systematic review. Transl Psychiatry 2019; 9:110. [PMID: 30846682 PMCID: PMC6405856 DOI: 10.1038/s41398-019-0444-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/02/2019] [Accepted: 02/16/2019] [Indexed: 01/21/2023] Open
Abstract
Cortical excitation/inhibition (E/I) imbalances contribute to various clinical symptoms observed in autism spectrum disorder (ASD). However, the detailed pathophysiologic underpinning of E/I imbalance remains uncertain. Transcranial magnetic stimulation (TMS) motor-evoked potentials (MEP) are a non-invasive tool for examining cortical inhibition in ASD. Here, we conducted a systematic review on TMS neurophysiology in motor cortex (M1) such as MEPs and short-interval intracortical inhibition (SICI) between individuals with ASD and controls. Out of 538 initial records, we identified six articles. Five studies measured MEP, where four studies measured SICI. There were no differences in MEP amplitudes between the two groups, whereas SICI was likely to be reduced in individuals with ASD compared with controls. Notably, SICI largely reflects GABA(A) receptor-mediated function. Conversely, other magnetic resonance spectroscopy and postmortem methodologies assess GABA levels. The present review demonstrated that there may be neurophysiological deficits in GABA receptor-mediated function in ASD. In conclusion, reduced GABAergic function in the neural circuits could underlie the E/I imbalance in ASD, which may be related to the pathophysiology of clinical symptoms of ASD. Therefore, a novel treatment that targets the neural circuits related to GABA(A) receptor-mediated function in regions involved in the pathophysiology of ASD may be promising.
Collapse
Affiliation(s)
- Fumi Masuda
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan ,0000 0000 9747 6806grid.410827.8Department of Psychiatry, Shiga University of Medical Science, Shiga, Japan
| | - Shinichiro Nakajima
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan ,0000 0001 2157 2938grid.17063.33Multimodal Imaging Group, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Takahiro Miyazaki
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- 0000 0004 0459 167Xgrid.66875.3aDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Sakiko Tsugawa
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Wada
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kamiyu Ogyu
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Paul E. Croarkin
- 0000 0000 8793 5925grid.155956.bPharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Daniel M. Blumberger
- 0000 0001 2157 2938grid.17063.33Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Zafiris J. Daskalakis
- 0000 0001 2157 2938grid.17063.33Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Masaru Mimura
- 0000 0004 1936 9959grid.26091.3cDepartment of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
44
|
Demetriou EA, DeMayo MM, Guastella AJ. Executive Function in Autism Spectrum Disorder: History, Theoretical Models, Empirical Findings, and Potential as an Endophenotype. Front Psychiatry 2019; 10:753. [PMID: 31780959 PMCID: PMC6859507 DOI: 10.3389/fpsyt.2019.00753] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
This review presents an outline of executive function (EF) and its application to autism spectrum disorder (ASD). The development of the EF construct, theoretical models of EF, and limitations in the study of EF are outlined. The potential of EF as a cognitive endophenotype for ASD is reviewed, and the Research Domain Criteria (RDoC) framework is discussed for researching EF in ASD given the multifaceted factors that influence EF performance. A number of executive-focused cognitive models have been proposed to explain the symptom clusters observed in ASD. Empirical studies suggest a broad impairment in EF, although there is significant inter-individual variability in EF performance. The observed heterogeneity of EF performance is considered a limiting factor in establishing EF as a cognitive endophenotype in ASD. We propose, however, that this variability in EF performance presents an opportunity for subtyping within the spectrum that can contribute to targeted diagnostic and intervention strategies. Enhanced understanding of the neurobiological basis that underpins EF performance, such as the excitation/inhibition hypothesis, will likely be important. Application of the RDoC framework could provide clarity on the nature of EF impairment in ASD with potential for greater understanding of, and improved interventions for, this disorder.
Collapse
Affiliation(s)
- Eleni A Demetriou
- Autism Clinic for Translational Research, Brain and Mind Centre, Faculty of Medicine and Health, Children's Hospital Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Marilena M DeMayo
- Autism Clinic for Translational Research, Brain and Mind Centre, Faculty of Medicine and Health, Children's Hospital Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Adam J Guastella
- Autism Clinic for Translational Research, Brain and Mind Centre, Faculty of Medicine and Health, Children's Hospital Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|