1
|
Pauziene N, Ranceviene D, Rysevaite-Kyguoliene K, Ragauskas T, Inokaitis H, Sabeckis I, Plekhanova K, Khmel O, Pauza DH. Neurochemical alterations of intrinsic cardiac ganglionated nerve plexus caused by arterial hypertension developed during ageing in spontaneously hypertensive and Wistar Kyoto rats. J Anat 2023; 243:630-647. [PMID: 37083051 PMCID: PMC10485580 DOI: 10.1111/joa.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
The acknowledged hypothesis of the cause of arterial hypertension is the emerging disbalance in sympathetic and parasympathetic regulations of the cardiovascular system. This disbalance manifests in a disorder of sustainability of endogenous autonomic and sensory neural substances including calcitonin gene-related peptide (CGRP). This study aimed to examine neurochemical alterations of intrinsic cardiac ganglionated nerve plexus (GP) triggered by arterial hypertension during ageing in spontaneously hypertensive rats of juvenile (prehypertensive, 8-9 weeks), adult (early hypertensive, 12-18 weeks) and elderly (persistent hypertensive, 46-60 weeks) age in comparison with the age-matched Wistar-Kyoto rats as controls. Parasympathetic, sympathetic and sensory neural structures of GP were analysed and evaluated morphometrically in tissue sections and whole-mount cardiac preparations. Both the elevated blood pressure and the evident ultrasonic signs of heart failure were identified for spontaneously hypertensive rats and in part for the aged control rats. The amount of adrenergic and immunoreactive to CGRP neural structures was increased in the adult group of spontaneously hypertensive rats along with the significant alterations that occurred during ageing. In conclusion, the revealed chemical alterations of GP support the hypothesis about the possible disbalance of efferent and afferent heart innervation and may be considered as the basis for the emergence and progression of arterial hypertension and perhaps even as a consequence of hypertension in the aged spontaneously hypertensive rats. The determined anatomical changes in the ageing Wistar-Kyoto rats suggest this breed being as inappropriate for its use as control animals for hypertension studies in older animal age.
Collapse
Affiliation(s)
- Neringa Pauziene
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dalia Ranceviene
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Tomas Ragauskas
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Hermanas Inokaitis
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ignas Sabeckis
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Khrystyna Plekhanova
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Olena Khmel
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius H Pauza
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
2
|
Panzenhagen AC, Bau CHD, Grevet EH, Rovaris DL. Expanding the discussion on experimental models of attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2022; 137:104641. [PMID: 35364189 DOI: 10.1016/j.neubiorev.2022.104641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Alana C Panzenhagen
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Claiton H D Bau
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Adulthood ADHD Outpatient Program (ProDAH), Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Eugenio H Grevet
- Department of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Adulthood ADHD Outpatient Program (ProDAH), Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Diego L Rovaris
- Universidade de Sao Paulo Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, São Paulo, Brazil.
| |
Collapse
|
3
|
Coatl-Cuaya H, Tendilla-Beltrán H, de Jesús-Vásquez LM, Garcés-Ramírez L, Gómez-Villalobos MDJ, Flores G. Losartan enhances cognitive and structural neuroplasticity impairments in spontaneously hypertensive rats. J Chem Neuroanat 2021; 120:102061. [PMID: 34952137 DOI: 10.1016/j.jchemneu.2021.102061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/22/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022]
Abstract
Hypertension is a risk factor for vascular dementia, which is the second most prevalent type of dementia, just behind Alzheimer's disease. This highlights the brain vulnerability due to hypertension, which may increase with aging. Thus, studying how hypertension affects neural cells and behavior, as well as the effects of antihypertensives on these alterations, it's important to understand the hypertension consequences in the brain. The spontaneously hypertensive rat (SHR) has been useful for the study of hypertension alterations in diverse organs, including the brain. Thus, we studied the losartan effects on cognitive and structural neuroplasticity impairments in SHR of 10 months of age. In the first instance, we evaluated the losartan effects on exploratory behavior and novel object recognition test (NORT) in the SHR. Then, we assessed the density and morphology of dendritic spines of pyramidal neurons from the prefrontal cortex (PFC) layers 3 and 5, and CA1 of the dorsal Hp (dHp). Our results indicate that in SHR, losartan treatment (2 months, 15 mg/Kg/day) reduces high blood pressure to age-matched vehicle-treated Wistar-Kyoto (WKY) rat levels. Moreover, losartan improved long-term memory in SHR compared with age-matched vehicle-treated WKY rats, without affecting the locomotor and anxiety behaviors. The behavioral improvement of the SHR can be associated with the increase in the number of dendritic spines and the mushroom spine population in the PFC and the dHp. In conclusion, losartan enhances cognitive impairments by controlling the high blood pressure and improving neuroplasticity in animals with chronic hypertension.
Collapse
Affiliation(s)
- Heriberto Coatl-Cuaya
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico; Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, Mexico
| | - Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico; Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, Mexico
| | | | - Linda Garcés-Ramírez
- Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, Mexico
| | | | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
4
|
Escelsior A, Sterlini B, Murri MB, Serafini G, Aguglia A, da Silva BP, Corradi A, Valente P, Amore M. Red-hot chili receptors: A systematic review of TRPV1 antagonism in animal models of psychiatric disorders and addiction. Behav Brain Res 2020; 393:112734. [DOI: 10.1016/j.bbr.2020.112734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022]
|
5
|
Alves CB, Almeida AS, Marques DM, Faé AHL, Machado ACL, Oliveira DL, Portela LVC, Porciúncula LO. Caffeine and adenosine A 2A receptors rescue neuronal development in vitro of frontal cortical neurons in a rat model of attention deficit and hyperactivity disorder. Neuropharmacology 2019; 166:107782. [PMID: 31756336 DOI: 10.1016/j.neuropharm.2019.107782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/24/2019] [Accepted: 09/16/2019] [Indexed: 01/23/2023]
Abstract
Although some studies have supported the effects of caffeine for treatment of Attention deficit and hyperactivity disorder (ADHD), there were no evidences about its effects at the neuronal level. In this study, we sought to find morphological alterations during in vitro development of frontal cortical neurons from Spontaneoulsy hypertensive rats (SHR, an ADHD rat model) and Wistar-Kyoto rats (WKY, control strain). Further, we investigated the effects of caffeine and adenosine A1 and A2A receptors (A1R and A2AR) signaling. Cultured cortical neurons from WKY and SHR were analyzed by immunostaining of microtubule-associated protein 2 (MAP-2) and tau protein after treatment with either caffeine, or A1R and A2AR agonists or antagonists. Besides, the involvement of PI3K and not PKA signaling was also assessed. Neurons from ADHD model displayed less neurite branching, shorter maximal neurite length and decreased axonal outgrowth. While caffeine recovered neurite branching and elongation from ADHD neurons via both PKA and PI3K signaling, A2AR agonist (CGS 21680) promoted more neurite branching via PKA signaling. The selective A2AR antagonist (SCH 58261) was efficient in recovering axonal outgrowth from ADHD neurons through PI3K and not PKA signaling. For the first time, frontal cortical neurons were isolated from ADHD model and they presented disturbances in the differentiation and outgrowth. By showing that caffeine and A2AR may act at neuronal level rescuing ADHD neurons outgrowth, our findings strengthen the potential of caffeine and A2AR receptors as an adjuvant for ADHD treatment.
Collapse
Affiliation(s)
- Catiane B Alves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santana, Porto Alegre, RS, Brazil, 90035-003
| | - Amanda S Almeida
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santana, Porto Alegre, RS, Brazil, 90035-003
| | - Daniela M Marques
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santana, Porto Alegre, RS, Brazil, 90035-003
| | - Ana Helena L Faé
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santana, Porto Alegre, RS, Brazil, 90035-003
| | - Ana Carolina L Machado
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santana, Porto Alegre, RS, Brazil, 90035-003
| | - Diogo L Oliveira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santana, Porto Alegre, RS, Brazil, 90035-003
| | - Luis Valmor C Portela
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santana, Porto Alegre, RS, Brazil, 90035-003
| | - Lisiane O Porciúncula
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, Santana, Porto Alegre, RS, Brazil, 90035-003.
| |
Collapse
|