1
|
Wang D, Wang J, Yan D, Wang M, Yang L, Demin KA, de Abreu MS, Kalueff AV. Minocycline reduces neurobehavioral deficits evoked by chronic unpredictable stress in adult zebrafish. Brain Res 2024; 1845:149209. [PMID: 39233136 DOI: 10.1016/j.brainres.2024.149209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Chronic stress-related brain disorders are widespread and debilitating, and often cause lasting neurobehavioral deficits. Minocycline, a common antibiotic and an established inhibitor of microglia, emerges as potential treatment of these disorders. The zebrafish (Danio rerio) is an important emerging model organism in translational neuroscience and stress research. Here, we evaluated the potential of minocycline to correct microglia-mediated behavioral, genomic and neuroimmune responses induced by chronic unpredictable stress (CUS) in adult zebrafish. We demonstrated that CUS evoked overt behavioral deficits in the novel tank, light-dark box and shoaling tests, paralleled by elevated stress hormones (CRH, ACTH and cortisol), and upregulated brain expression of the 'neurotoxic M1' microglia-specific biomarker gene (MHC-2) and pro-inflammatory cytokine genes (IL-1β, IL-6 and IFN-γ). CUS also elevated peripheral (whole-body) pro-inflammatory (IL-1β, IFN-γ) and lowered anti-inflammatory cytokines (IL-4 and IL-10), as well as reduced whole-brain serotonin, dopamine and norepinephrine levels, and increased brain dopamine and serotonin turnover. In contrast, minocycline attenuated most of these effects, also reducing CUS-elevated peripheral levels of IL-6 and IFN-γ. Collectively, this implicates microglia in zebrafish responses to chronic stress, and suggests glial pathways as potential evolutionarily conserved drug targets for treating stress-evoked neuropathogenesis. Our findings also support the growing translational value of zebrafish models for understanding complex molecular mechanisms of brain pathogenesis and its therapy.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Mengyao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Longen Yang
- School of Pharmacy, Southwest University, Chongqing, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil; Western Caspian University, Baku, Azerbaijan; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Center, St. Petersburg, Russia; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University (XJTLU), Suzhou, China; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
2
|
Li F, Chen X, Xu X, Wang L, Yan J, Yu Y, Shan X, Zhang R, Xing H, Zhang T, Pan S. Alterations of intestinal mucosal barrier, cecal microbiota diversity, composition, and metabolites of yellow-feathered broilers under chronic corticosterone-induced stress: a possible mechanism underlying the anti-growth performance and glycolipid metabolism disorder. Microbiol Spectr 2024; 12:e0347323. [PMID: 38497712 PMCID: PMC11064513 DOI: 10.1128/spectrum.03473-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/25/2024] [Indexed: 03/19/2024] Open
Abstract
This study aimed to explore alterations in growth performance, glycolipid metabolism disorders, intestinal mucosal barrier, cecal microbiota community, and metabolites in a chronic corticosterone (CORT)-induced stress (CCIS) broiler model. Results showed that compared with control (CON) broilers, in CCIS broilers: (i) the final body weight (BW), BW gain, and average daily gain were significantly reduced. (ii) The glycolipid metabolism disorder and impairement of intestinal immune barrier and physical barrier function were observed. (iii) Diversity and richness of cecal microbiota were obviously increased. From phylum to genus level, the abundances of Firmicutes and Faecalibacterium were significantly decreased, while the abundances of Proteobacteria, RuminococcaceaeUCG-005, and Escherichia coli (Shigella) were significantly increased. Microbial network analysis and function pathways prediction showed that cecal microbiota was mainly concentrated in translation, metabolism, nucleotide metabolism, and endocrine system. (iv) The main differential metabolites identified include steroids and their derivatives, amino acids, fatty acids, and carbohydrates; among which 37 metabolites were significantly upregulated, while 27 metabolites were significantly downregulated. These differential metabolites were mainly enriched in pathways related to steroid hormone biosynthesis and tyrosine metabolism. (v) Correlation between cecal microbiota and glycolipid metabolism indexes showed that BW and total cholesterol (TC) were positively correlated with Christensenellaceae_R.7_group and Escherichia_Shigella, respectively. Furthermore, the downregulated Faecalibacterium and Christensenellaceae were negatively correlated with the upregulated differentially expressed metabolites. These findings suggested that CCIS altered cecal microbiota composition and metabolites, which led to glycolipid metabolism disorder and impaired the nutritional metabolism and immune homeostasis, providing a theoretical basis for efforts to eliminate the harm of chronic stress to human health and animal production. IMPORTANCE The study aimed to determine the influence of altered intestinal mucosal barrier, cecum flora community, and metabolites on anti-growth performance, glycolipid metabolism disorders of chronic corticosterone (CORT)-induced stress (CCIS) broilers. Compared with control (CON) broilers, in CCIS broilers: (i) anti-growth performance, glycolipid metabolism disorder, and impaired intestinal immune barrier and physical barrier function were observed. (ii) From phylum to genus level, the abundances of Firmicutes and Faecalibacterium were decreased; whereas, the abundances of Proteobacteria, RuminococcaceaeUCG-005, and Escherichia coli (Shigella) were increased. (iii) Differential metabolites in cecum were mainly enriched in steroid hormone biosynthesis and tyrosine metabolism. (iv) Body weight (BW) and total cholesterol (TC) were positively correlated with Christensenellaceae_R.7_group and Escherichia_Shigella, respectively, while downregulated Faecalibacterium and Christensenellaceae were negatively correlated with upregulated metabolites. Our findings suggest that CCIS induces anti-growth performance and glycolipid metabolism disorder by altering cecum flora and metabolites, providing a theoretical basis for efforts to eliminate the effect of chronic stress on human health and animal production.
Collapse
Affiliation(s)
- Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyu Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lijun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yichen Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuemei Shan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rui Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu, Sichuan, China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Tangjie Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Animal Science, Washington State University, Pullman, Washington, USA
- Guangling College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Stankiewicz AM, Jaszczyk A, Goscik J, Juszczak GR. Stress and the brain transcriptome: Identifying commonalities and clusters in standardized data from published experiments. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110558. [PMID: 35405299 DOI: 10.1016/j.pnpbp.2022.110558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022]
Abstract
Interpretation of transcriptomic experiments is hindered by many problems including false positives/negatives inherent to big-data methods and changes in gene nomenclature. To find the most consistent effect of stress on brain transcriptome, we retrieved data from 79 studies applying animal models and 3 human studies investigating post-traumatic stress disorder (PTSD). The analyzed data were obtained either with microarrays or RNA sequencing applied to samples collected from more than 1887 laboratory animals and from 121 human subjects. Based on the initial database containing a quarter million differential expression effect sizes representing transcripts in three species, we identified the most frequently reported genes in 223 stress-control comparisons. Additionally, the analysis considers sex, individual vulnerability and contribution of glucocorticoids. We also found an overlap between gene expression in PTSD patients and animals which indicates relevance of laboratory models for human stress response. Our analysis points to genes that, as far as we know, were not specifically tested for their role in stress response (Pllp, Arrdc2, Midn, Mfsd2a, Ccn1, Htra1, Csrnp1, Tenm4, Tnfrsf25, Sema3b, Fmo2, Adamts4, Gjb1, Errfi1, Fgf18, Galnt6, Slc25a42, Ifi30, Slc4a1, Cemip, Klf10, Tom1, Dcdc2c, Fancd2, Luzp2, Trpm1, Abcc12, Osbpl1a, Ptp4a2). Provided transcriptomic resource will be useful for guiding the new research.
Collapse
Affiliation(s)
- Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Aneta Jaszczyk
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Joanna Goscik
- Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
| | - Grzegorz R Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland.
| |
Collapse
|
4
|
Demin KA, Krotova NA, Ilyin NP, Galstyan DS, Kolesnikova TO, Strekalova T, de Abreu MS, Petersen EV, Zabegalov KN, Kalueff AV. Evolutionarily conserved gene expression patterns for affective disorders revealed using cross-species brain transcriptomic analyses in humans, rats and zebrafish. Sci Rep 2022; 12:20836. [PMID: 36460699 PMCID: PMC9718822 DOI: 10.1038/s41598-022-22688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Widespread, debilitating and often treatment-resistant, depression and other stress-related neuropsychiatric disorders represent an urgent unmet biomedical and societal problem. Although animal models of these disorders are commonly used to study stress pathogenesis, they are often difficult to translate across species into valuable and meaningful clinically relevant data. To address this problem, here we utilized several cross-species/cross-taxon approaches to identify potential evolutionarily conserved differentially expressed genes and their sets. We also assessed enrichment of these genes for transcription factors DNA-binding sites down- and up- stream from their genetic sequences. For this, we compared our own RNA-seq brain transcriptomic data obtained from chronically stressed rats and zebrafish with publicly available human transcriptomic data for patients with major depression and their respective healthy control groups. Utilizing these data from the three species, we next analyzed their differential gene expression, gene set enrichment and protein-protein interaction networks, combined with validated tools for data pooling. This approach allowed us to identify several key brain proteins (GRIA1, DLG1, CDH1, THRB, PLCG2, NGEF, IKZF1 and FEZF2) as promising, evolutionarily conserved and shared affective 'hub' protein targets, as well as to propose a novel gene set that may be used to further study affective pathogenesis. Overall, these approaches may advance cross-species brain transcriptomic analyses, and call for further cross-species studies into putative shared molecular mechanisms of affective pathogenesis.
Collapse
Affiliation(s)
- Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| | - Nataliya A Krotova
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Nikita P Ilyin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | | | | | | | | | | | - Allan V Kalueff
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia.
- Institute of Neurosciences and Medicine, Novosibirsk, Russia.
- Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|