1
|
Yan L, Geng Q, Cao Z, Liu B, Li L, Lu P, Lin L, Wei L, Tan Y, He X, Li L, Zhao N, Lu C. Insights into DNMT1 and programmed cell death in diseases. Biomed Pharmacother 2023; 168:115753. [PMID: 37871559 DOI: 10.1016/j.biopha.2023.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
DNMT1 (DNA methyltransferase 1) is the predominant member of the DNMT family and the most abundant DNMT in various cell types. It functions as a maintenance DNMT and is involved in various diseases, including cancer and nervous system diseases. Programmed cell death (PCD) is a fundamental mechanism that regulates cell proliferation and maintains the development and homeostasis of multicellular organisms. DNMT1 plays a regulatory role in various types of PCD, including apoptosis, autophagy, necroptosis, ferroptosis, and others. DNMT1 is closely associated with the development of various diseases by regulating key genes and pathways involved in PCD, including caspase 3/7 activities in apoptosis, Beclin 1, LC3, and some autophagy-related proteins in autophagy, glutathione peroxidase 4 (GPX4) and nuclear receptor coactivator 4 (NCOA4) in ferroptosis, and receptor-interacting protein kinase 1-receptor-interacting protein kinase 3-mixed lineage kinase domain-like protein (RIPK1-RIPK3-MLKL) in necroptosis. Our study summarizes the regulatory relationship between DNMT1 and different types of PCD in various diseases and discusses the potential of DNMT1 as a common regulatory hub in multiple types of PCD, offering a perspective for therapeutic approaches in disease.
Collapse
Affiliation(s)
- Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lini Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Xuan SM, Su YW, Liang YM, Gao ZJ, Liu CY, Fan BF, Shi YW, Wang XG, Zhao H. mGluR5 in amygdala modulates fear memory generalization. Front Behav Neurosci 2023; 17:1072642. [PMID: 36891323 PMCID: PMC9986332 DOI: 10.3389/fnbeh.2023.1072642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Fear memory generalization is regarded as the core characteristic of posttraumatic stress disorder (PTSD) development. However, the mechanism that contributes to the generalization of conditioned fear memory is still unclear. The generalization is generally considered to be a mismatch that occurs during memory consolidation. Methods Foot shocks and tones were given as unconditioned stress and conditioned stress, respectively for fear conditioning training. Immunofluorescence staining, western blotting and qPCR were performed to determine the expression of different genes in amygdala of mice after fear conditioning training. Cycloheximide was used as a protein synthesis inhibitor and 2-methyl-6-phenylethynyl-pyridine was injected for mGluR5 inhibition. Results Fear conditioning using caused incremental generalization, which was clearly observed during training. The density of c-Fos+ cells or the synaptic p-NMDAR expression did not differ with stress intensities. Strong-shock fear conditioning could induce significant mGluR5 de novo synthesis in the amygdala, which was not observed in the weak-shock group. Inhibition of mGluR5 impaired fear memory generalization induced by strong-shock fear conditioning, but the generalization level induced by weak-shock training was enhanced. Discussion These results indicated that mGluR5 in the amygdala is critical to the function of inappropriate fear memory generalization and suggested that this may be a potential target for the treatment of PTSD.
Collapse
Affiliation(s)
- Shou-Min Xuan
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ya-Wen Su
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi-Meng Liang
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhen-Jie Gao
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chun-Yan Liu
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bu-Fang Fan
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan-Wei Shi
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Guang Wang
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hu Zhao
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|