1
|
Wang H, Yao W, Yuan Y, Shi S, Liu T, Wang N. Yeast-Raised Polyamidoxime Hydrogel Prepared by Ice Crystal Dispersion for Efficient Uranium Extraction from Seawater. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306534. [PMID: 38348596 PMCID: PMC11077670 DOI: 10.1002/advs.202306534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/20/2023] [Indexed: 05/09/2024]
Abstract
Uranium extraction from seawater has attracted worldwide attention due to the massive reserves of uranium. Due to the straightforward synthesis and strong affinity toward uranyl ions (UO2 2+), the amidoxime group shows promise for use in highly efficient uranium capture. However, the low mass transfer efficiency within traditional amidoxime-based adsorbents severely limits the adsorption rate and the utilization of adsorption sites. In this work, a macroporous polyamidoxime (PAO) hydrogel is prepared by yeast-based biological foaming combined with ice crystal dispersion that effectively maintained the yeast activity. The yeast-raised PAO (Y-PAO) adsorbent has numerous bubble-like holes with an average pore diameter >100 µm. These macropores connected with the intrinsic micropores of PAO to construct efficient diffusion channels for UO2 2+ provided fast mass transporting channels, leading to the sufficient exposure of hidden binding sites. The maximum adsorption capacity of Y-PAO membrane reached 10.07 mg-U/g-ads, ≈1.54 times higher than that of the control sample. It took only eight days for Y-PAO to reach the saturation adsorption capacity of the control PAO (6.47 mg-U/g-ads, 28 days). Meanwhile, Y-PAO possessed excellent ion selectivity, good reusability, and low cost. Overall, the Y-PAO membrane is a highly promising adsorbent for use in industrial-scale uranium extraction from seawater.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228China
| | - Weikun Yao
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228China
| | - Se Shi
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228China
| | - Tao Liu
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228China
| |
Collapse
|
2
|
Fujimoto K, Omondi BA, Kawano S, Hidaka Y, Ishida K, Okabe H, Hara K. Ionized acrylamide-based copolymer / terpolymer hydrogels for recovery of positive and negative heavy metal ions. PLoS One 2024; 19:e0298047. [PMID: 38427672 PMCID: PMC10906855 DOI: 10.1371/journal.pone.0298047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/17/2024] [Indexed: 03/03/2024] Open
Abstract
In this study, we explored the effective capture of both cations and anions onto a single adsorbent. Acrylamide (AAm) served as the polymer backbone, onto which co-monomers sodium p-styrenesulfonate (SS) and N,N-dimethylaminopropyl acrylamide (DMAPAA) were grafted, creating ionized polymer hydrogel adsorbents. These adsorbents were engineered for the synergistic separation and recovery of heavy metal cations and anions from concentrated solutions, focusing specifically on industrially significant ions such as Ni2+-, Cu2+, Zn2+ and (Cr2O7)2-. The adsorption and desorption behaviors of the AAm terpolymer hydrogels were investigated across various pH solutions, considering the competition and concentrations of these specific metal ions. Moreover, the study delved into the effects of the internal pH environment within the hydrogel adsorbents, determining its impact on the type of metal adsorbed and the adsorption capacity. Our findings indicated that the adsorption of cations was enhanced with a higher proportion of SS relative to DMAPAA in the hydrogel. In contrast, significant anion capture occurred when the concentration of DMAPAA exceeded that of SS. However, equal ratios of SS and DMAPAA led to a noticeable reduction in the adsorption of both types of substrates, attributed to the counteractive nature of these co-monomers. To enhance the adsorption efficiency, it may be necessary to consider methods for micro-scale separation of the two types of monomers. Additionally, the adsorption capacity was observed to be directly proportional to the swelling capacity of the hydrogels. For complete desorption and separation of the cations and anions from the adsorbent, the application of concentrated NaOH solutions followed by HNO3 was found to be essential. Given the varying concentrations of cation and anion pollutants, often present in heavy metal factory effluents, it is crucial to fine-tune the ratios of DMAPAA and SS during the synthesis process. This adjustment ensures optimized efficiency in the decontamination and recovery of these significant heavy metal ions.
Collapse
Affiliation(s)
- Kentaro Fujimoto
- Department of Applied Quantum Physics and Nuclear Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Brian Adala Omondi
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Research and Education of Environmental Technology, Kyushu University, Fukuoka, Japan
| | - Shinya Kawano
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Research and Education of Environmental Technology, Kyushu University, Fukuoka, Japan
| | - Yoshiki Hidaka
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Research and Education of Environmental Technology, Kyushu University, Fukuoka, Japan
| | - Kenji Ishida
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Research and Education of Environmental Technology, Kyushu University, Fukuoka, Japan
| | - Hirotaka Okabe
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Research and Education of Environmental Technology, Kyushu University, Fukuoka, Japan
| | - Kazuhiro Hara
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
- Center for Research and Education of Environmental Technology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Chen X, Wei C, Xie M, Hu Y. Single-Photon Ionization Induced New Covalent Bond Formation in Acrylonitrile(AN)-Pyrrole(Py) Clusters. J Phys Chem A 2023; 127:8272-8279. [PMID: 37769120 DOI: 10.1021/acs.jpca.3c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The formation of nitrogen-containing organic compounds is crucial for understanding chemical evolution and the origin of life in the interstellar medium (ISM). In this study, we explore whether acrylonitrile (AN) and pyrrole (Py) can form new nitrogen-containing compounds after single-photon ionization in their gaseous clusters by vacuum ultraviolet (VUV)-infrared (IR) spectroscopy and theoretical calculations. The results show that a strong linear H-bond is formed in neutral AN-Py, while cyclic or bicyclic H-bonded networks are formed in the neutral AN-Py2 cluster. It is found that the structure containing a new C-C covalent bond between two moieties in (AN-Py)+ is formed besides the formation of H-bonded structures after AN-Py is ionized by VUV light. In (AN-Py2)+ cluster cations, new C-C or C-N covalent bonds tend to be formed between two Py, with (Py)2+ as the core in the cluster. The results reveal that new covalent bonds are more likely to be formed between two Py species when AN and Py are present in the cationic clusters. These results provide spectroscopic evidence of the formation of new nitrogen-containing organic compounds from AN and Py induced by VUV, which are helpful for our understanding of the formation of diverse prebiotic molecules in interstellar space.
Collapse
Affiliation(s)
- Xujian Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Chengcheng Wei
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Min Xie
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
4
|
Chen Q, Xue X, Liu Y, Guo A, Chen K, Yin J, Yu F, Zhu H, Guo X. Shear-induced fabrication of SiO 2 nano-meshes for efficient uranium capture. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129524. [PMID: 35999738 DOI: 10.1016/j.jhazmat.2022.129524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The extraction of uranium from seawater and the safe treatment of wastewater containing uranium (VI) were important to ensure the sustainable development of nuclear-related energy sources. Two-dimensional silica nanomaterials have been extensively investigated in the field of uranium adsorption due to their high adsorption capacity, short equilibration times, and easily modified surface groups. However, the two-dimensional mesoporous silica nanomaterial preparation has become a challenge due to the lack of natural sheet templating agents. The reason will hinder the development of silica nanomaterials for uranium extraction. Here, the specific surface area silica nanomeshes (HSMSMs) uranium adsorbent was prepared by a high shear method to induce nanobubble formation. HSMSMs showed a high uranium adsorption capacity of 822 mg-U/g-abs in seawater with the uranium adsorption concentration was 50 mg/L, which was approximately 2 times higher than the conventional mesoporous silica nanomaterials. Compared to HSMSMs, the amidoxime-modified high specific surface area silica nanomesh (HSMSMs-AO) demonstrated good selectivity for U(VI), and the uranium ions uptake was 877 mg-U/g-abs in 50 mg/L uranium-spiked simulated seawater. Due to HSMSMs-AO's stable chemical properties and high mechanical strength, HSMSMs-AO also displayed long service life. Benefiting from the simple preparation method and high adsorption capacity of HSMSMs, HSMSMs could be a promising candidate for large-scale extraction of uranium from seawater.
Collapse
Affiliation(s)
- Qiang Chen
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Xueyan Xue
- Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, PR China
| | - Ying Liu
- China National Nuclear Industry Corporation 404, Jiayuguan 735100, PR China
| | - Aixia Guo
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Kai Chen
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Jiao Yin
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Urumqi 830011, PR China
| | - Feng Yu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China; Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, PR China.
| | - Hui Zhu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Urumqi 830011, PR China.
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China; State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
5
|
Wongsawaeng D, Wongjaikham W, Swantomo D, Basuki KT. Innovative seawater uranium recovery agent based on low-cost polyacrylonitrile fibers. Appl Radiat Isot 2020; 158:109067. [DOI: 10.1016/j.apradiso.2020.109067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/18/2019] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
|
6
|
Wongjaikham W, Wongsawaeng D, Hosemann P. Synthesis of amidoxime polymer gel to extract uranium compound from seawater by UV radiation curing. J NUCL SCI TECHNOL 2019. [DOI: 10.1080/00223131.2019.1602485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Wijittra Wongjaikham
- Nuclear Engineering Department, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Doonyapong Wongsawaeng
- Nuclear Engineering Department, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Peter Hosemann
- Department of Nuclear Engineering, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
7
|
Complexation of Hg(II) ions with a functionalized adsorbent: A thermodynamic and kinetic approach. PROGRESS IN NUCLEAR ENERGY 2018. [DOI: 10.1016/j.pnucene.2018.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
8
|
Omondi BA, Okabe H, Hidaka Y, Hara K. Poly (1, 4-diazocane-5, 8-dione) macrocyclic-functionalized hydrogel for high selectivity transition metal ion adsorption. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Yang L, Bi L, Lei Z, Miao Y, Li B, Liu T, Wu W. Preparation of Amidoxime-Functionalized β-Cyclodextrin-Graft-(Maleic Anhydride-co-Acrylonitrule) Copolymer and Evaluation of the Adsorption and Regeneration Properties of Uranium. Polymers (Basel) 2018; 10:E236. [PMID: 30966271 PMCID: PMC6414990 DOI: 10.3390/polym10030236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 11/25/2022] Open
Abstract
The β-cyclodextrin-graft-(maleic anhydride-co-acrylonitrule) copolymer (β-CD-g-(MAH-co-AN)) synthesized through radical polymerization reactions of β-cyclodextrin (β-CD) with maleic anhydride (MAH) and acrylonitrule (AN) in the special monomer proportion, chemically modify with amidoxime groups to obtained the new adsorbent, which was terms as amidoxime-functionalized β-cyclodextrin-graft-(maleic anhydride-co-acrylonitrule) copolymer (β-CD-g-(MAH-co-AO)). Based on the characteristic results of Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), X-ray Diffraction (XRD), and thermalgravity analysis (TGA) techniques, the grafted nitrile groups were successfully converted to amidoxime groups by reaction with hydroxylamine. In this report, the influence of different factors such as pH value and ionic strength, solid-liquid ratio, contact time, initial U(VI) concentration, and temperature on adsorption was investigated by a batch adsorption experiment. The adsorption process fitting results show that the adsorption followed the Langmuir isotherm model and the maximum adsorption capacity was 0.747 g/g at pH 4.0. In addition, the regeneration performance was investigated by varying the concentration of eluent, temperature, and contact time. Under the desorption condition of 0.10 M HNO₃, the adsorbents can be reused 12 times in the case that the adsorption capacity was not significantly reduced. The functionalized copolymer exhibits high selectivity under circumstance of other co-existing ions is present in the solution.
Collapse
Affiliation(s)
- Liu Yang
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Lei Bi
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Zhiwei Lei
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Yu Miao
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Bolin Li
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Tonghuan Liu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Wangsuo Wu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
10
|
Piechowicz M, Abney CW, Thacker NC, Gilhula JC, Wang Y, Veroneau SS, Hu A, Lin W. Successful Coupling of a Bis-Amidoxime Uranophile with a Hydrophilic Backbone for Selective Uranium Sequestration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27894-27904. [PMID: 28752756 DOI: 10.1021/acsami.7b04656] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The amidoxime group (-RNH2NOH) has long been used to extract uranium from seawater on account of its high affinity toward uranium. The development of tunable sorbent materials for uranium sequestration remains a research priority as well as a significant challenge. Herein, we report the design, synthesis, and uranium sorption properties of bis-amidoxime-functionalized polymeric materials (BAP 1-3). Bifunctional amidoxime monomers were copolymerized with an acrylamide cross-linker to obtain bis-amidoxime incorporation as high as 2 mmol g-1 after five synthetic steps. The resulting sorbents were able to uptake nearly 600 mg of uranium per gram of polymer after 37 days of contact with a seawater simulant containing 8 ppm uranium. Moreover, the polymeric materials exhibited low vanadium uptake with a maximum capacity of 128 mg of vanadium per gram of polymer. This computationally predicted and experimentally realized selectivity of uranium over vanadium, nearly 5 to 1 w/w, is one of the highest reported to date and represents an advancement in the rational design of sorbent materials with high uptake capacity and selectivity.
Collapse
Affiliation(s)
- Marek Piechowicz
- Department of Chemistry, University of Chicago , 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Carter W Abney
- Oak Ridge National Laboratory , P.O. Box 2008, MS-6201, Oak Ridge, Tennessee 37831-6181, United States
| | - Nathan C Thacker
- Department of Chemistry, University of Chicago , 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - James C Gilhula
- Department of Chemistry, University of Chicago , 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Youfu Wang
- Department of Chemistry, University of Chicago , 929 E. 57th Street, Chicago, Illinois 60637, United States
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Samuel S Veroneau
- Department of Chemistry, University of Chicago , 929 E. 57th Street, Chicago, Illinois 60637, United States
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Wenbin Lin
- Department of Chemistry, University of Chicago , 929 E. 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
|