Yan Y, Li Y, Fu H, Qian Y, Li Q, Dou Q, Geng J. Effect of oxide impurities on the dissolution behavior of Th
4+, Be
2+ and U
4+ in fluoride salts.
RSC Adv 2024;
14:3024-3032. [PMID:
38239450 PMCID:
PMC10794951 DOI:
10.1039/d3ra08506f]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024] Open
Abstract
Oxides are one of the most important impurities in the fuel salt of molten salt reactors (MSRs), and excessive oxide impurities pose a risk to the safe operation of MSRs. This study focused on investigating the precipitation behavior between Th4+, U4+, and Be2+ with O2- in the 2LiF-BeF2 (FLiBe) eutectic salt system. The results showed that the solubility of UO2 was 5.52 × 10-3 mol kg-1, and the solubility product (Ksp) of UO2 was 6.14 × 10-7 mol3 kg-3 in FLiBe salt at 650 °C. It was also found that the O2- ion would firstly react with U4+ to form UO2, and then the excessive O2- would react with Be2+ to generate BeO in the FLiBe system. Despite conducting the solubility experiment of ThO2 and titration experiment of FLiBe-ThF4, the system failed to achieve the solubility and the Ksp of ThO2. The main reason for this was that O2- preferentially reacted with Be2+ over Th4+ to form precipitates, in other words, Be2+ exerted a protective effect against Th4+. Above all, this work experimentally demonstrated that in the FLiBe system, O2- preferentially combines with U4+ to form a precipitate, followed by Be2+, while Th4+ is relatively inert.
Collapse