1
|
Poddar S, Levitus M. Buffer-Dependent Photophysics of 2-Aminopurine: Insights into Fluorescence Quenching and Excited-State Interactions. J Phys Chem B 2024; 128:2640-2651. [PMID: 38452253 DOI: 10.1021/acs.jpcb.3c07269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
2-Aminopurine (2AP) is the most widely used fluorescent nucleobase analogue in DNA and RNA research. Its unique photophysical properties and sensitivity to environmental changes make it a useful tool for understanding nucleic acid dynamics and DNA-protein interactions. We studied the effect of ions present in commonly used buffer solutions on the excited-state photophysical properties of 2AP. Fluorescence quenching was negligible for tris(hydroxymethyl)aminomethane (TRIS), but significant for phosphate, carbonate, 3-(N-morpholino) propanesulfonic acid (MOPS), and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffers. Results indicate that the two tautomers of 2AP (7H, 9H) are quenched by phosphate ions to different extents. Quenching by the H2PO4- ion is more pronounced for the 7H tautomer, while the opposite is true for the HPO42- ion. For phosphate ions, the results of the time-resolved fluorescence study cannot be explained using a simple collisional quenching mechanism. Instead, results are consistent with transient interactions between 2AP and the phosphate ions. We postulate that excited-state interactions between the 2AP tautomers and an H-bond acceptor (phosphate and carbonate) result in significant quenching of the singlet-excited state of 2AP. Such interactions manifest in biexponential fluorescence intensity decays with pre-exponential factors that vary with quencher concentration, and downward curvatures of the Stern-Volmer plots.
Collapse
Affiliation(s)
- Souvik Poddar
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, Arizona 85287, United States
- The Biodesign Institute Center for Single Molecule Biophysics, Arizona State University, Tempe, Arizona 85287, United States
| | - Marcia Levitus
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, Arizona 85287, United States
- The Biodesign Institute Center for Single Molecule Biophysics, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
2
|
Lv D, Nong W, Guan Y. Edible ligand-metal-organic frameworks: Synthesis, structures, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Frańska M, Stężycka O, Ławniczak Ł. Unusual gas-phase hydration efficiency of magnesium-adenosine complex. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8982. [PMID: 33140450 DOI: 10.1002/rcm.8982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Magdalena Frańska
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, Poznań, 60-965, Poland
| | - Olga Stężycka
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, Poznań, 60-965, Poland
| | - Łukasz Ławniczak
- Institute of Chemical Technology and Engineering, Poznań University of Technology, Berdychowo 4, Poznań, 60-965, Poland
| |
Collapse
|
4
|
García-Terán JP, Beobide G, Castillo O, Cepeda J, Luque A, Pérez-Yáñez S, Román P. Supramolecular architectures of metal-oxalato coordination polymers bearing N-tethered adenine nucleobases. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Valentín-Pérez Á, Perles J, Herrero S, Jiménez-Aparicio R. Coordination capacity of cytosine, adenine and derivatives towards open-paddlewheel diruthenium compounds. J Inorg Biochem 2018; 187:109-115. [PMID: 30077945 DOI: 10.1016/j.jinorgbio.2018.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 12/11/2022]
Abstract
[Ru2Cl2(DPhF)3] (DPhF = diphenylformamidinate) links preferentially to the junctions of RNA (ribonucleic acid) structures, although the bonding mode is not known. In order to clarify this question the reactions between [Ru2Cl2(DPhF)3] and cytosine (Hcyto), cytidine (Hcyti), cytidine 2',3'-cyclic monophosphate sodium salt (NacCMP), adenine (Hade), adenosine (Haden) and adenosine 3',5'-cyclic monophosphate (HcAMP) have been carried out. In the resultant complexes, cyto (cytosinate), cyti (cytidinate), cCMP (cytidine 2',3'-cyclic monophosphate monoanion), ade (adeninate), aden (adenosinate) and cAMP (deprotonated adenosine 3',5'-cyclic monophosphate) are bonded to the diruthenium unit as N,N'-bridging ligands, as confirmed by the solution of the crystal structures of [RuCl(DPhF)3(cyto)] and [RuCl(DPhF)3(ade)] by X-ray diffraction. The axial positions of the diruthenium species are still available for additional interactions with other residues that could explain its preference towards RNA junctions.
Collapse
Affiliation(s)
- Ángela Valentín-Pérez
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Josefina Perles
- Laboratorio de Difracción de Rayos X de Monocristal, Servicio Interdepartamental de Investigación, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Santiago Herrero
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain.
| | - Reyes Jiménez-Aparicio
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain.
| |
Collapse
|
6
|
Cu(II)–N6-Alkyladenine Complexes: Synthesis, X-ray Characterization and Magnetic Properties. MAGNETOCHEMISTRY 2018. [DOI: 10.3390/magnetochemistry4020024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Zhao H, He H, Wang X, Liu Z, Ding B, Yang H. Four unprecedented 2D trinuclear Mn(II)-complexes with adenine nucleobase controlled by solvent or co-ligand: Hydrothermal synthesis, crystal structure and magnetic behaviour. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
García-Raso A, Terrón A, Bauzá A, Frontera A, Molina JJ, Vázquez-López EM, Fiol JJ. Crystal structures of N6-modified-aminoacid/peptide nucleobase analogs: hybrid adenine–glycine and adenine–glycylglycine molecules. NEW J CHEM 2018. [DOI: 10.1039/c8nj02147c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anion–π interactions in crystal structures of N6-modified-aminoacid and dipeptide adenine analogs are investigated using X-ray crystallography and DFT calculations.
Collapse
Affiliation(s)
- Angel García-Raso
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| | - Angel Terrón
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| | - Antonio Bauzá
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| | - Jhon J. Molina
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| | - Ezequiel M. Vázquez-López
- Instituto de Investigación Sanitaria Galicia Sur/Universidade de Vigo
- Departamento de Química Inorgánica
- Facultade de Química
- Edificio Ciencias Experimentais
- E-36310 Vigo
| | - Juan J. Fiol
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| |
Collapse
|
9
|
Du Y, Fang HX, Zhang Q, Zhang HL, Hong Z. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:580-585. [PMID: 26436846 DOI: 10.1016/j.saa.2015.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/24/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.
Collapse
Affiliation(s)
- Yong Du
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China.
| | - Hong Xia Fang
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Qi Zhang
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Hui Li Zhang
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Zhi Hong
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
10
|
Metal–carboxylato–nucleobase systems: From supramolecular assemblies to 3D porous materials. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.03.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Patel DK, Domínguez-Martín A, Brandi-Blanco MDP, Choquesillo-Lazarte D, Nurchi VM, Niclós-Gutiérrez J. Metal ion binding modes of hypoxanthine and xanthine versus the versatile behaviour of adenine. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Monfared HH, Vahedpour M, Yeganeh MM, Ghorbanloo M, Mayer P, Janiak C. Concentration dependent tautomerism in green [Cu(HL¹)(L²)] and brown [Cu(L¹)(HL²)] with H₂L¹ = (E)-N'-(2-hydroxy-3-methoxybenzylidene)benzoylhydrazone and HL² = pyridine-4-carboxylic (isonicotinic) acid. Dalton Trans 2011; 40:1286-94. [PMID: 21203633 DOI: 10.1039/c0dt00371a] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The in situ formed hydrazone Schiff base ligand (E)-N'-(2-hydroxy-3-methoxybenzylidene)benzoylhydrazone (H₂L¹) reacts with copper(II) acetate in ethanol in the presence of pyridine-4-carboxylic acid (isonicotinic acid, HL²) to green-[Cu(HL¹)(L²)]·H₂O·C₂H₅OH (1) and brown-[Cu(L¹)(HL²)] (2) complexes which crystallize as concomitant tautomers where either the mono-anion (HL¹)⁻ or di-anion (L¹)²⁻ of the Schiff base and simultaneously the pyridine-carboxylate (L²)⁻ or the acid (HL²) (both through the pyridine nitrogen atom) function as ligands. The square-planar molecular copper(II) complexes differ in only a localized proton position either on the amide nitrogen of the hydrazone Schiff base in 1 or on the carboxyl group of the isonicotin ligand in 2. The proportion of the tautomeric forms in the crystalline solid-state can be controlled over a wide range from 1:2 = 95 : 5 to ∼2 : 98 by increasing the solution concentration. UV/Vis spectral studies show both tautomers to be kinetically stable (inert), that is, with no apparent tautomerization, in acetonitrile solution. The UB3LYP/6-31+G* level optimized structures of the two complexes are in close agreement with experimental findings. The solid-state structures feature 1D hydrogen-bonded chain from charge-assisted O((-))H-N and O-H((-))N hydrogen bonding in 1 and 2, respectively. In 1 pyridine-4-carboxylate also assumes a metal-bridging action by coordinating a weakly bound carboxylate group as a fifth ligand to a Cu axial site. Neighboring chains in 1 and 2 are connected by strong π-stacking interactions involving also the five- and six-membered, presumably metalloaromatic Cu-chelate rings.
Collapse
|
13
|
Thomas-Gipson J, Beobide G, Castillo O, Cepeda J, Luque A, Pérez-Yáñez S, Aguayo AT, Román P. Porous supramolecular compound based on paddle-wheel shaped copper(ii)–adenine dinuclear entities. CrystEngComm 2011. [DOI: 10.1039/c1ce05195d] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Metal ion interactions with nucleobases in the tetradentate 1,4,7,10-tetraazacyclododecane (cyclen)-ligand system: Crystal structures of [Cu(cyclen)(adeninato)]·ClO4·2H2O, [{Cu(cyclen)}2(hypoxanthinato)]·(ClO4)3, [Cu(cyclen)(theophyllinato)]3·(ClO4)3·2H2O, and [Cu(cyclen)(xanthinato)]·(0.7ClO4)·(0.3ClO4)·3H2O·(0.5H2O)3. J Mol Struct 2010. [DOI: 10.1016/j.molstruc.2009.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|