Simple, fast, and instrumentless fabrication of paper analytical devices by novel contact stamping method based on acrylic varnish and 3D printing.
Mikrochim Acta 2021;
188:437. [PMID:
34837526 DOI:
10.1007/s00604-021-05102-7]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022]
Abstract
A new contact stamping method for fabrication of paper-based analytical devices (PADs) is reported. It uses an all-purpose acrylic varnish and 3D-printed stamps to pattern hydrophobic structures on paper substrates. The use of 3D printing allows quickly prototyping the desired stamp shape without resorting to third-party services, which are often expensive and time consuming. To the best of our knowledge, this is the first report regarding the use of this material for creation of hydrophobic barriers in paper substrates, as well as this 3D printing-based stamping method. The acrylic varnish was characterized and the features of the stamping method were studied. The PADs developed here presented better compatibility with organic solvents and surfactants compared with similar protocols. Furthermore, the use of this contact stamping method for fabrication of paper electrochemical devices was also possible, as well as multiplexed microfluidic devices for lateral flow testing. The analytical applicability of the varnish-based PADs was demonstrated through the image-based colorimetric quantification of iron in pharmaceutical samples. A limit of detection of 0.61 mg L-1 was achieved. The results were compared with spectrophotometry for validation and presented great concordance (relative error was < 5% and recoveries were between 104 and 108%). Thus, taking into account the performance of the devices explored here, we believe this novel contact stamping method is a very interesting alternative for production of PADs, exhibiting great potentiality. In addition, this work brings a new application of 3D printing in analytical sciences.
Collapse