1
|
Romanowski G, Budka J, Inkielewicz-Stepniak I. Oxidovanadium(V) Schiff Base Complexes Derived from Chiral 3-amino-1,2-propanediol Enantiomers: Synthesis, Spectroscopic Studies, Catalytic and Biological Activity. Int J Mol Sci 2024; 25:5010. [PMID: 38732229 PMCID: PMC11084397 DOI: 10.3390/ijms25095010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Oxidovanadium(V) complexes, [(+)VOL1-5] and [(-)VOL1-5], with chiral tetradentate Schiff bases, which are products of monocondensation of S(‒)-3-amino-1,2-propanediol or R(+)-3-amino-1,2-propanediol with salicylaldehyde derivatives, have been synthesized. Different spectroscopic methods, viz. 1H and 51V NMR, IR, UV-Vis, and circular dichroism, as well as elemental analysis, have been used for their detailed characterization. Furthermore, the epoxidation of styrene, cyclohexene, and two monoterpenes, S(‒)-limonene and (‒)-α-pinene, using two oxidants, aqueous 30% H2O2 or tert-butyl hydroperoxide (TBHP) in decane, has been studied with catalytic amounts of all complexes. Finally, biological cytotoxicity studies have also been performed with these oxidovanadium(V) compounds for comparison with cis-dioxidomolybdenum(VI) Schiff base complexes with the same chiral ligands, as well as to determine the cytoprotection against the oxidative damage caused by 30% H2O2 in the HT-22 hippocampal neuronal cells in the range of their 10-100 μM concentration.
Collapse
Affiliation(s)
- Grzegorz Romanowski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, PL-80308 Gdansk, Poland
| | - Justyna Budka
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 7, Building 27, PL-80211 Gdansk, Poland;
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 7, Building 27, PL-80211 Gdansk, Poland;
| |
Collapse
|
2
|
Romanowski G, Budka J, Inkielewicz-Stepniak I. Synthesis, Spectroscopic Characterization, Catalytic and Biological Activity of Oxidovanadium(V) Complexes with Chiral Tetradentate Schiff Bases. Molecules 2023; 28:7408. [PMID: 37959827 PMCID: PMC10649191 DOI: 10.3390/molecules28217408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
New oxidovanadium(V) complexes, VOL1-VOL10, with chiral tetradentate Schiff bases obtained by monocondensation reaction of salicylaldehyde derivatives with 1S,2S-(+)-2-amino-1-(4-nitrophenyl)-1,3-propanediol. All complexes have been characterized using different spectroscopic methods, viz. IR, UV-Vis, circular dichroism, one- (1H, 51V) and two-dimensional (COSY, NOESY) NMR spectroscopy, and elemental analysis. Furthermore, the catalytic ability of all compounds in the epoxidation of styrene, cyclohexene, and its naturally occurring monoterpene derivatives, i.e., S(-)-limonene and (-)-α-pinene has also been studied, using two different oxidants, i.e., aqueous 30% H2O2 or tert-butyl hydroperoxide (TBHP). In addition, the biological properties of these chiral oxidovanadium(V) compounds, but also cis-dioxidomolybdenum(VI) complexes with the same chiral Schiff bases, were studied. Their cytotoxic and cytoprotective activity studies with the HT-22 hippocampal neuronal cells revealed a concentration-dependent effect in the range of 10-100 μM. Moreover, vanadium(V) complexes, in contrast to cis-dioxidomolybdenum(VI) compounds, demonstrated higher cytotoxicity and lack of cytoprotective ability against H2O2-induced cytotoxicity.
Collapse
Affiliation(s)
- Grzegorz Romanowski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, PL-80308 Gdansk, Poland
| | - Justyna Budka
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 7, Building 27, PL-80211 Gdansk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 7, Building 27, PL-80211 Gdansk, Poland
| |
Collapse
|
3
|
Jos S, Suja N. Chiral Schiff base ligands of salicylaldehyde: A versatile tool for medical applications and organic synthesis-A review. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Zhang L, You Z, Qian HY. Synthesis, characterization and crystal structure of a novel tetranuclear oxidovanadium(V) complex derived from N’-(2-hydroxy-3-methoxybenzylidene)isonicotinohydrazide with catalytic property. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Li Zhang
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| | - Zhonglu You
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| | - Heng-Yu Qian
- Key Laboratory of Surface & Interface Science of Henan, School of Material & Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, P.R. China
| |
Collapse
|
5
|
De S, Jain A, Barman P. Recent Advances in the Catalytic Applications of Chiral Schiff‐Base Ligands and Metal Complexes in Asymmetric Organic Transformations. ChemistrySelect 2022. [DOI: 10.1002/slct.202104334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Soumik De
- Department of Chemistry National Institute of Technology Silchar Assam India
| | - Abhinav Jain
- Department of Chemistry National Institute of Technology Silchar Assam India
| | - Pranjit Barman
- Department of Chemistry National Institute of Technology Silchar Assam India
| |
Collapse
|
6
|
Anti-cancer properties and catalytic oxidation of sulfides based on vanadium(V) complexes of unprotected sugar-based Schiff-base ligands. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Wojaczyńska E, Wojaczyński J. Modern Stereoselective Synthesis of Chiral Sulfinyl Compounds. Chem Rev 2020; 120:4578-4611. [PMID: 32347719 PMCID: PMC7588045 DOI: 10.1021/acs.chemrev.0c00002] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Indexed: 12/22/2022]
Abstract
Chiral sulfinyl compounds, sulfoxides, sulfoximines, sulfinamides, and other derivatives, play an important role in asymmetric synthesis as versatile auxiliaries, ligands, and catalysts. They are also recognized as pharmacophores found in already marketed and well-sold drugs (e.g., esomeprazole) and used in drug design. This review is devoted to the modern methods of preparation of sulfinyl derivatives in enantiopure or enantiomerically enriched form. Selected new approaches leading to racemic products for which the asymmetric variant can be developed in the future are mentioned as well.
Collapse
Affiliation(s)
- Elżbieta Wojaczyńska
- Faculty
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego
27, 50 370 Wrocław, Poland
| | - Jacek Wojaczyński
- Faculty
of Chemistry, University of Wrocław 14 F. Joliot-Curie St., 50 383 Wrocław, Poland
| |
Collapse
|
8
|
Fomenko IS, Nadolinnyi VA, Efimov NN, Kokovkin VV, Gushchin AL. Binuclear Oxidovanadium(IV) Complex with the Bridging Chloranilate Ligand: Synthesis and Magnetic Properties. RUSS J COORD CHEM+ 2019. [DOI: 10.1134/s1070328419110022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Paul B, Sharma SK, Khatun R, Adak S, Singh G, Joshi V, Poddar MK, Bordoloi A, Sasaki T, Bal R. Development of Highly Efficient and Durable Three-Dimensional Octahedron NiCo2O4 Spinel Nanoparticles toward the Selective Oxidation of Styrene. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Bappi Paul
- Catalytic Conversion & Processes Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Sachin K. Sharma
- Catalytic Conversion & Processes Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Rubina Khatun
- Catalytic Conversion & Processes Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Shubhadeep Adak
- Catalytic Conversion & Processes Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Gurmeet Singh
- Catalytic Conversion & Processes Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Vedant Joshi
- Catalytic Conversion & Processes Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Mukesh Kumar Poddar
- Catalytic Conversion & Processes Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Ankur Bordoloi
- Catalytic Conversion & Processes Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| | - Takehiko Sasaki
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Rajaram Bal
- Catalytic Conversion & Processes Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India
| |
Collapse
|
10
|
Zou DH, Sun N, Chen W. Synthesis and Crystal Structures of Oxidovanadium(V) Complexes Derived from Hydrazones with the Catalytic Property. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619070114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Probing the synthetic protocols and coordination chemistry of oxido-, dioxido-, oxidoperoxido-vanadium and related complexes of higher nuclearity. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Mohammadnezhad G, Akintola O, Buchholz A, Görls H, Plass W. Probing the chirality of oxidovanadium( v) centers in complexes with tridentate sugar Schiff-base ligands: solid-state and solution behavior. NEW J CHEM 2019. [DOI: 10.1039/c9nj02881a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Configurations of oxidovanadium centers in diastereomeric complexes with chiral sugar ligands are assigned and in the solid state triggered by the coordination number at the vanadium center through the steric requirements of the chelate ligand.
Collapse
Affiliation(s)
| | - Oluseun Akintola
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität, Jena
- 07743 Jena
- Germany
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität, Jena
- 07743 Jena
- Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität, Jena
- 07743 Jena
- Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität, Jena
- 07743 Jena
- Germany
| |
Collapse
|
13
|
Rocha M, Ruiz MC, Echeverría GA, Piro OE, Di Virgilio AL, León IE, Frontera A, Gil DM. Diethylaminophenyl-based Schiff base Cu(ii) and V(iv) complexes: experimental and theoretical studies and cytotoxicity assays. NEW J CHEM 2019. [DOI: 10.1039/c9nj04975d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A combined experimental and theoretical study and cytotoxicity assays of diethylaminophenyl-based Schiff base Cu(ii) and VO(iv) complexes are reported. The Cu(ii) complex shows interesting chelate ring⋯π interactions in the crystal structure.
Collapse
Affiliation(s)
- Mariana Rocha
- INQUINOA (CONICET-UNT)
- Instituto de Química Orgánica
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| | - María C. Ruiz
- CEQUINOR (CONICET-UNLP)
- Facultad de Ciencias Exactas
- Universidad Nacional de la Plata
- La Plata
- Argentina
| | - Gustavo A. Echeverría
- Departamento de Física
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata e IFLP (CONICET, CCT-La Plata)
- La Plata
- Argentina
| | - Oscar E. Piro
- Departamento de Física
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata e IFLP (CONICET, CCT-La Plata)
- La Plata
- Argentina
| | - Ana L. Di Virgilio
- CEQUINOR (CONICET-UNLP)
- Facultad de Ciencias Exactas
- Universidad Nacional de la Plata
- La Plata
- Argentina
| | - Ignacio E. León
- CEQUINOR (CONICET-UNLP)
- Facultad de Ciencias Exactas
- Universidad Nacional de la Plata
- La Plata
- Argentina
| | - Antonio Frontera
- Department of Chemistry
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares)
- Spain
| | - Diego M. Gil
- INQUINOA (CONICET-UNT)
- Instituto de Química Orgánica
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| |
Collapse
|
14
|
Balakrishnan C, Neelakantan M. Crystal structure and bio-catalytic potential of oxovanadium(IV) Schiff base complexes derived from 2-hydroxy-4-(prop-2-yn-1-yloxy)benzaldehyde and alicyclic/aromatic diamines. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.09.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Han J, Soloshonok VA, Klika KD, Drabowicz J, Wzorek A. Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem Soc Rev 2017; 47:1307-1350. [PMID: 29271432 DOI: 10.1039/c6cs00703a] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chiral sulfoxides are in extremely high demand in nearly every sector of the chemical industry concerned with the design and development of new synthetic reagents, drugs, and functional materials. The primary objective of this review is to update readers on the latest developments from the past five years (2011-2016) in the preparation of optically active sulfoxides. Methodologies covered include catalytic asymmetric sulfoxidation using either chemical, enzymatic, or hybrid biocatalytic means; kinetic resolution involving oxidation to sulfones, reduction to sulfides, modification of side chains, and imidation to sulfoximines; as well as various other methods including nucleophilic displacement at the sulfur atom for the desymmetrization of achiral sulfoxides, enantioselective recognition and separation based on either metal-organic frameworks (MOF's) or host-guest chemistry, and the Horner-Wadsworth-Emmons reaction. A second goal of this work concerns a critical discussion of the problem of the accurate determination of the stereochemical outcome of a reaction due to the self-disproportionation of enantiomers (SDE) phenomenon, particularly as it relates to chiral sulfoxides. The SDE is a little-appreciated phenomenon that can readily and spontaneously occur for scalemic samples when subjected to practically any physicochemical process. It has now been unequivocally demonstrated that ignorance in the SDE phenomenon inevitably leads to erroneous interpretation of the stereochemical outcome of catalytic enantioselective reactions, in particular, for the synthesis of chiral sulfoxides. It is hoped that this two-pronged approach to covering the chemistry of chiral sulfoxides will be appealing, engaging, and motivating for current research-active authors to respond to in their future publications in this exciting area of current research.
Collapse
Affiliation(s)
- Jianlin Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, 210093 Nanjing, China.
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain. and IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69009 Heidelberg, Germany.
| | - Józef Drabowicz
- Department of Heterooganic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland and Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-201 Częstochowa, Poland
| | - Alicja Wzorek
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain. and Institute of Chemistry, Jan Kochanowski University in Kielce, Swiętokrzyska 15G, 25-406 Kielce, Poland.
| |
Collapse
|
16
|
Tang J, Yao P, Huang F, Luo M, Wei Y, Bian H. Stereoselective sulfoxidation catalyzed by achiral Schiff base complexes in the presence of serum albumin in aqueous media. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Azizi M, Maleki A, Hakimpoor F. Solvent, metal and halogen-free synthesis of sulfoxides by using a recoverable heterogeneous urea-hydrogen peroxide silica-based oxidative catalytic system. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
18
|
Bryliakov KP. Catalytic Asymmetric Oxygenations with the Environmentally Benign Oxidants H2O2 and O2. Chem Rev 2017; 117:11406-11459. [DOI: 10.1021/acs.chemrev.7b00167] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Konstantin P. Bryliakov
- Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russian Federation
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russian Federation
| |
Collapse
|
19
|
Peng DL. Synthesis, crystal structures, and catalytic properties of two oxidovanadium(V) complexes with tridentate Schiff bases. RUSS J COORD CHEM+ 2017. [DOI: 10.1134/s1070328417060045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
|
21
|
Sarkheil M, Lashanizadegan M. Copper(II) Schiff Base Complex Immobilized on Superparamagnetic Fe3
O4
@SiO2
as a Magnetically Separable Nanocatalyst for Oxidation of Alkenes and Alcohols. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3726] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marzieh Sarkheil
- Department of Chemistry, Faculty of Physics and Chemistry; Alzahra University; PO Box 1993893973 Tehran Iran
| | - Maryam Lashanizadegan
- Department of Chemistry, Faculty of Physics and Chemistry; Alzahra University; PO Box 1993893973 Tehran Iran
| |
Collapse
|
22
|
Ghorbanloo M, Jafari S, Bikas R, Krawczyk MS, Lis T. Dioxidovanadium(V) complexes containing thiazol-hydrazone NNN-donor ligands and their catalytic activity in the oxidation of olefins. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Tong J, Li W, Bo L, Wang H, Hu Y, Zhang Z, Mahboob A. Selective oxidation of styrene catalyzed by cerium-doped cobalt ferrite nanocrystals with greatly enhanced catalytic performance. J Catal 2016. [DOI: 10.1016/j.jcat.2016.10.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Al Zoubi W, Ko YG. Schiff base complexes and their versatile applications as catalysts in oxidation of organic compounds: part I. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3574] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wail Al Zoubi
- School of Materials Science & Engineering; Yeungnam University; Gyeongsan 38541 Republic of Korea
| | - Young Gun Ko
- School of Materials Science & Engineering; Yeungnam University; Gyeongsan 38541 Republic of Korea
| |
Collapse
|
25
|
Dadvar MA, Fazaeli R. Application of sodium titanate nanotubes doped with vanadium (VNaTNT) as a heterogeneous catalyst for oxidation of sulfides at room temperature. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(15)61056-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Menati S, Amiri Rudbari H, Askari B, Riahi Farsani M, Jalilian F, Dini G. Synthesis and characterization of insoluble cobalt(II), nickel(II), zinc(II) and palladium(II) Schiff base complexes: Heterogeneous catalysts for oxidation of sulfides with hydrogen peroxide. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Mary Imelda Jayaseeli A, Ramdass A, Rajagopal S. Selective H2O2 oxidation of organic sulfides to sulfoxides catalyzed by cobalt(III)–salen ion. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Sutradhar M, Martins LM, Guedes da Silva MFC, Pombeiro AJ. Vanadium complexes: Recent progress in oxidation catalysis. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.01.020] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Kalita M, Tamuli KJ, Barman P, Sarma B, Baruah R, Deka Boruah HP. Synthesis, crystal structure, bioactivities of Ni(II), Cu(II), Co(II) and Pd(II) complexes with unsymmetrical thioether donor Schiff base: Phosphine free Pd(II) complex catalyzed Suzuki reaction. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
ISLAM NASHREENS, BORUAH JEENAJYOTI. Macromolecular peroxo complexes of Vanadium(V) and Molybdenum(VI): Catalytic activities and biochemical relevance. J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0833-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Pyridoxal based ONS and ONO vanadium(V) complexes: Structural analysis and catalytic application in organic solvent free epoxidation. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcata.2015.03.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Khorshidifard M, Rudbari HA, Askari B, Sahihi M, Farsani MR, Jalilian F, Bruno G. Cobalt(II), copper(II), zinc(II) and palladium(II) Schiff base complexes: Synthesis, characterization and catalytic performance in selective oxidation of sulfides using hydrogen peroxide under solvent-free conditions. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.03.041] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Krivosudský L, Schwendt P, Šimunek J, Gyepes R. Stereospecificity in vanadium Schiff base complexes: Formation, crystallization and epimerization processes. J Inorg Biochem 2015; 147:65-70. [DOI: 10.1016/j.jinorgbio.2015.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/16/2022]
|
34
|
Ultrasonic assisted preparation of nano-plate molybdenum(VI) coordination complex as a precursor for molybdenum trioxide nanoparticles preparation. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-013-1248-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Schiff base ligands derived from 2-pyridinecarboxaldehyde and its complexes: characterization, thermal, electrochemical, and catalytic activity results. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-014-1381-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Xiong Y, Li WH. N′-(3-Bromo-2-hydroxybenzylidene)isonicotinohydrazide and its oxovanadium(V) complex: synthesis, structures, and catalytic properties. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.963065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yan Xiong
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, PR China
| | - Wen-Hui Li
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, PR China
| |
Collapse
|
37
|
Aragón-Muriel A, Camprubí-Robles M, González-Rey E, Salinas-Castillo A, Rodríguez-Diéguez A, Gómez-Ruiz S, Polo-Cerón D. Dual investigation of lanthanide complexes with cinnamate and phenylacetate ligands: Study of the cytotoxic properties and the catalytic oxidation of styrene. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.02.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Ebrahimipour SY, Abaszadeh M, Castro J, Seifi M. Synthesis, X-ray crystal structure, DFT calculation and catalytic activity of two new oxido-vanadium(V) complexes containing ONO tridentate Schiff bases. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.04.069] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Cobalt(II) and Manganese(II) Complexes of Novel Schiff Bases, Synthesis, Charcterization, and Thermal, Antimicrobial, Electronic, and Catalytic Features. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/506851] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carbazoles containing two new Schiff bases (Z,Z)-N,N′-bis[(9-ethyl-9H-carbazole-3-yl)methylene]propane-1,3 diamine (L1) and (Z,Z)-N,N′-bis[(9-ethyl-9H-carbazole-3-yl)methylene]-2,2-dimethylpropane-1,3-diamine (L2) and their Co(II) and Mn(II) complexes were synthesized and characterized using various spectroscopic methods and thermal analysis, which gave high thermal stability results for the ligands and their cobalt complexes. The title compounds were examined for their antimicrobial and antifungal activities, which resulted in high activity values for the ligands and their manganese complexes. Oxidation reactions carried out on styrene and cyclohexene revealed that the complex compounds were the most effective catalysts for styrene oxidation, giving good selectivities than those of cyclohexene oxidation. Electronic features of the synthesized compounds were also reported within this work.
Collapse
|
40
|
Synthesis, crystal structures, and catalytic oxidation properties of oxidovanadium(V) complexes with Schiff base ligands. TRANSIT METAL CHEM 2014. [DOI: 10.1007/s11243-014-9821-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Hosseini-Monfared H, Bikas R, Mahboubi-Anarjan P, Blake AJ, Lippolis V, Arslan NB, Kazak C. Oxidovanadium(V) complexes containing hydrazone based O,N,O-donor ligands: Synthesis, structure, catalytic properties and theoretical calculations. Polyhedron 2014. [DOI: 10.1016/j.poly.2013.11.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
|