1
|
Devkota L, SantaLucia DJ, Wheaton AM, Pienkos AJ, Lindeman SV, Krzystek J, Ozerov M, Berry JF, Telser J, Fiedler AT. Spectroscopic and Magnetic Studies of Co(II) Scorpionate Complexes: Is There a Halide Effect on Magnetic Anisotropy? Inorg Chem 2023; 62:5984-6002. [PMID: 37000941 DOI: 10.1021/acs.inorgchem.2c04468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The observation of single-molecule magnetism in transition-metal complexes relies on the phenomenon of zero-field splitting (ZFS), which arises from the interplay of spin-orbit coupling (SOC) with ligand-field-induced symmetry lowering. Previous studies have demonstrated that the magnitude of ZFS in complexes with 3d metal ions is sometimes enhanced through coordination with heavy halide ligands (Br and I) that possess large free-atom SOC constants. In this study, we systematically probe this "heavy-atom effect" in high-spin cobalt(II)-halide complexes supported by substituted hydrotris(pyrazol-1-yl)borate ligands (TptBu,Me and TpPh,Me). Two series of complexes were prepared: [CoIIX(TptBu,Me)] (1-X; X = F, Cl, Br, and I) and [CoIIX(TpPh,Me)(HpzPh,Me)] (2-X; X = Cl, Br, and I), where HpzPh,Me is a monodentate pyrazole ligand. Examination with dc magnetometry, high-frequency and -field electron paramagnetic resonance, and far-infrared magnetic spectroscopy yielded axial (D) and rhombic (E) ZFS parameters for each complex. With the exception of 1-F, complexes in the four-coordinate 1-X series exhibit positive D-values between 10 and 13 cm-1, with no dependence on halide size. The five-coordinate 2-X series exhibit large and negative D-values between -60 and -90 cm-1. Interpretation of the magnetic parameters with the aid of ligand-field theory and ab initio calculations elucidated the roles of molecular geometry, ligand-field effects, and metal-ligand covalency in controlling the magnitude of ZFS in cobalt-halide complexes.
Collapse
|
2
|
Shlian DG, Parkin G. Organozinc Fluoride and Trifluoromethyl Compounds Supported by the Bis(2-pyridylthio)methyl Ligand. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel G. Shlian
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
3
|
G Jafari M, Fehn D, Reinholdt A, Hernández-Prieto C, Patel P, Gau MR, Carroll PJ, Krzystek J, Liu C, Ozarowski A, Telser J, Delferro M, Meyer K, Mindiola DJ. Tale of Three Molecular Nitrides: Mononuclear Vanadium (V) and (IV) Nitrides As Well As a Mixed-Valence Trivanadium Nitride Having a V 3N 4 Double-Diamond Core. J Am Chem Soc 2022; 144:10201-10219. [PMID: 35652694 DOI: 10.1021/jacs.2c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transmetallation of [VCl3(THF)3] and [TlTptBu,Me] afforded [(TptBu,Me)VCl2] (1, TptBu,Me = hydro-tris(3-tert-butyl-5-methylpyrazol-1-yl)borate), which was reduced with KC8 to form a C3v symmetric VII complex, [(TptBu,Me)VCl] (2). Complex 1 has a high-spin (S = 1) ground state and displays rhombic high-frequency and -field electron paramagnetic resonance (HFEPR) spectra, while complex 2 has an S = 3/2 4A2 ground state observable by conventional EPR spectroscopy. Complex 1 reacts with NaN3 to form the VV nitride-azide complex [(TptBu,Me)V≡N(N3)] (3). A likely VIII azide intermediate en route to 3, [(TptBu,Me)VCl(N3)] (4), was isolated by reacting 1 with N3SiMe3. Complex 4 is thermally stable but reacts with NaN3 to form 3, implying a bis-azide intermediate, [(TptBu,Me)V(N3)2] (A), leading to 3. Reduction of 3 with KC8 furnishes a trinuclear and mixed-valent nitride, [{(TptBu,Me)V}2(μ4-VN4)] (5), conforming to a Robin-Day class I description. Complex 5 features a central vanadium ion supported only by bridging nitride ligands. Contrary to 1, complex 2 reacts with NaN3 to produce an azide-bridged dimer, [{(TptBu,Me)V}2(1,3-μ2-N3)2] (6), with two antiferromagnetically coupled high-spin VII ions. Complex 5 could be independently produced along with [(κ2-TptBu,Me)2V] upon photolysis of 6 in arene solvents. The putative {VIV≡N} intermediate, [(TptBu,Me)V≡N] (B), was intercepted by photolyzing 6 in a coordinating solvent, such as tetrahydrofuran (THF), yielding [(TptBu,Me)V≡N(THF)] (B-THF). In arene solvents, B-THF expels THF to afford 5 and [(κ2-TptBu,Me)2V]. A more stable adduct (B-OPPh3) was prepared by reacting B-THF with OPPh3. These adducts of B are the first neutral and mononuclear VIV nitride complexes to be isolated.
Collapse
Affiliation(s)
- Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dominik Fehn
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Anders Reinholdt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cristina Hernández-Prieto
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Prajay Patel
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Karsten Meyer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Shlian DG, Amemiya E, Parkin G. Synthesis of bis(2-pyridylthio)methyl zinc hydride and catalytic hydrosilylation and hydroboration of CO 2. Chem Commun (Camb) 2022; 58:4188-4191. [PMID: 35266933 DOI: 10.1039/d1cc06963b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of bis(2-pyridylthio)methane with Me2Zn and Zn[N(SiMe3)2]2 afford [Bptm]ZnMe and [Bptm]ZnN(SiMe3)2, thereby providing access to a variety of other [Bptm]ZnX derivatives, including the zinc hydride complex [Bptm]ZnH, which serves as a catalyst for the reduction of CO2 and other carbonyl compounds via hydrosilylation and hydroboration.
Collapse
Affiliation(s)
- Daniel G Shlian
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| | - Erika Amemiya
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
5
|
Roy MMD, Omaña AA, Wilson ASS, Hill MS, Aldridge S, Rivard E. Molecular Main Group Metal Hydrides. Chem Rev 2021; 121:12784-12965. [PMID: 34450005 DOI: 10.1021/acs.chemrev.1c00278] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.
Collapse
Affiliation(s)
- Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Andrew S S Wilson
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Michael S Hill
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
6
|
Chambenahalli R, Bhargav RM, McCabe KN, Andrews AP, Ritter F, Okuda J, Maron L, Venugopal A. Cationic Zinc Hydride Catalyzed Carbon Dioxide Reduction to Formate: Deciphering Elementary Reactions, Isolation of Intermediates, and Computational Investigations. Chemistry 2021; 27:7391-7401. [PMID: 33459452 DOI: 10.1002/chem.202005392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Indexed: 01/06/2023]
Abstract
Zinc has been an element of choice for carbon dioxide reduction in recent years. Zinc compounds have been showcased as catalysts for carbon dioxide hydrosilylation and hydroboration. The extent of carbon dioxide reduction can depend on various factors, including electrophilicity at the zinc center and the denticity of the ancillary ligands. In a few cases, the addition of Lewis acids to zinc hydride catalysts markedly influences carbon dioxide reduction. These factors have been investigated by exploring elementary reactions of carbon dioxide hydrosilylation and hydroboration by using cationic zinc hydrides bearing tetradentate tris[2-(dimethylamino)ethyl]amine and tridentate N,N,N',N'',N''-pentamethyldiethylenetriamine in the presence of triphenylborane and tris(pentafluorophenyl)borane.
Collapse
Affiliation(s)
- Raju Chambenahalli
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - R M Bhargav
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Karl N McCabe
- LPCNO, UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 31077, Toulouse, France
| | - Alex P Andrews
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Florian Ritter
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | - Laurent Maron
- LPCNO, UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 31077, Toulouse, France
| | - Ajay Venugopal
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| |
Collapse
|
7
|
Abiotic reduction of ketones with silanes catalysed by carbonic anhydrase through an enzymatic zinc hydride. Nat Chem 2021; 13:312-318. [PMID: 33603222 PMCID: PMC8675236 DOI: 10.1038/s41557-020-00633-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
Enzymatic reactions through mononuclear metal hydrides are unknown in nature, despite the prevalence of such intermediates in the reactions of synthetic transition-metal catalysts. If metalloenzymes would react through abiotic intermediates like these, then the scope of enzyme-catalyzed reactions would expand. Here we show that zinc-containing carbonic anhydrase enzymes catalyze hydride transfers from silanes to ketones with high enantioselectivity and report mechanistic data providing strong evidence that the process involves a mononuclear zinc hydride. This work shows that abiotic silanes can act as reducing equivalents in an enzyme-catalyzed process and that monomeric hydrides of electropositive metals, which are typically unstable in protic environments, can be catalytic intermediates in enzymatic processes. Overall, this work bridges a gap between the types of transformations in molecular catalysis and biocatalysis.
Collapse
|
8
|
Eedugurala N, Wang Z, Kanbur U, Ellern A, Pruski M, Sadow AD. Synthesis and Characterization of Tris(oxazolinyl)borato Copper(II) and Copper(I) Complexes. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Naresh Eedugurala
- Department of Chemistry Iowa State University 1605 Gilman Hall Ames IA 50011 United States
- U.S. Department of Energy Ames Laboratory 2416 Pammel Drive Iowa State University Ames IA 50011 United States
| | - Zhuoran Wang
- Department of Chemistry Iowa State University 1605 Gilman Hall Ames IA 50011 United States
- U.S. Department of Energy Ames Laboratory 2416 Pammel Drive Iowa State University Ames IA 50011 United States
| | - Uddhav Kanbur
- Department of Chemistry Iowa State University 1605 Gilman Hall Ames IA 50011 United States
- U.S. Department of Energy Ames Laboratory 2416 Pammel Drive Iowa State University Ames IA 50011 United States
| | - Arkady Ellern
- Department of Chemistry Iowa State University 1605 Gilman Hall Ames IA 50011 United States
| | - Marek Pruski
- Department of Chemistry Iowa State University 1605 Gilman Hall Ames IA 50011 United States
- U.S. Department of Energy Ames Laboratory 2416 Pammel Drive Iowa State University Ames IA 50011 United States
| | - Aaron D. Sadow
- Department of Chemistry Iowa State University 1605 Gilman Hall Ames IA 50011 United States
- U.S. Department of Energy Ames Laboratory 2416 Pammel Drive Iowa State University Ames IA 50011 United States
| |
Collapse
|
9
|
Sattler W, Shlian DG, Sambade D, Parkin G. Synthesis and structural characterization of bis(2-pyridylthio)(p-tolylthio)methyl zinc complexes and the catalytic hydrosilylation of CO2. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Piacentino EL, Parker K, Gilbert TM, O'Hair RAJ, Ryzhov V. Role of Ligand in the Selective Production of Hydrogen from Formic Acid Catalysed by the Mononuclear Cationic Zinc Complexes [(L)Zn(H)] + (L=tpy, phen, and bpy). Chemistry 2019; 25:9959-9966. [PMID: 31090119 DOI: 10.1002/chem.201901360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/25/2019] [Indexed: 11/10/2022]
Abstract
A series of zinc-based catalysts was evaluated for their efficiency in decomposing formic acid into molecular hydrogen and carbon dioxide in the gas phase using quadrupole ion trap mass spectrometry experiments. The effectiveness of the catalysts in the series [(L)Zn(H)]+ , where L=2,2':6',2''-terpyridine (tpy), 1,10-phenanthroline (phen) or 2,2'-bipyrydine (bpy), was found to depend on the ligand used, which turned out to be fundamental in tuning the catalytic properties of the zinc complex. Specifically, [(tpy)Zn(H)]+ displayed the fastest reaction with formic acid proceeding by dehydrogenation to produce the zinc formate complex [(tpy)Zn(O2 CH)]+ and H2 . The catalysts [(L)Zn(H)]+ are reformed by decarboxylating the zinc formate complexes [(L)Zn(O2 CH)]+ by collision-induced dissociation, which is the only reaction channel for each of the ligands used. The decarboxylation reaction was found to be reversible, since the zinc hydride complexes [(L)Zn(H)]+ react with carbon dioxide yielding the zinc formate complex. This reaction was again substantially faster for L=tpy than L=phen or bpy. The energetics and mechanisms of these processes were modelled using several levels of density functional theory (DFT) calculations. Experimental results are fully supported by the computational predictions.
Collapse
Affiliation(s)
- Elettra L Piacentino
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Kevin Parker
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Thomas M Gilbert
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Richard A J O'Hair
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| |
Collapse
|
11
|
Rauch M, Parkin G. Insertion of CS2into the Mg–H bond: synthesis and structural characterization of the magnesium dithioformate complex, [TismPriBenz]Mg(κ2-S2CH). Dalton Trans 2018; 47:12596-12605. [DOI: 10.1039/c8dt01947a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insertion of CS2into the Mg–H bond of [TismPriBenz]MgH affords [TismPriBenz]Mg(κ2-S2CH), the first structurally characterized magnesium dithioformate compound.
Collapse
Affiliation(s)
- Michael Rauch
- Department of Chemistry
- Columbia University
- New York
- USA
| | - Gerard Parkin
- Department of Chemistry
- Columbia University
- New York
- USA
| |
Collapse
|
12
|
Sambade D, Parkin G. Synthesis and structural characterization of tris(pyrazolyl)hydroaluminate and tris(pyrazolyl)hydrogallate lithium compounds. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.10.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Aluminum complexes with benzoxazolphenolate ligands: Synthesis, characterization and catalytic properties for ring-opening polymerization of cyclic esters. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.03.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Neary MC, Parkin G. Nickel-catalyzed release of H2 from formic acid and a new method for the synthesis of zerovalent Ni(PMe3)4. Dalton Trans 2016; 45:14645-50. [DOI: 10.1039/c6dt01499b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni(PMe3)4, which can be obtained by reaction of either Ni(py)4(O2CH)2 or Ni(O2CH)2·2H2O with PMe3, serves as a catalyst for the release of H2 from formic acid.
Collapse
Affiliation(s)
| | - Gerard Parkin
- Department of Chemistry
- Columbia University
- New York
- USA
| |
Collapse
|
15
|
Kreider-Mueller A, Quinlivan PJ, Rauch M, Owen JS, Parkin G. Synthesis, structure and reactivity of [TmBut]ZnH, a monomeric terminal zinc hydride compound in a sulfur-rich coordination environment: access to a heterobimetallic compound. Chem Commun (Camb) 2016; 52:2358-61. [DOI: 10.1039/c5cc08915h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The zinc hydride complex, [TmBut]ZnH, undergoes insertion of CO2 and facile protolytic cleavage, of which the latter provides access to heterobimetallic [TmBut]ZnMo(CO)3Cp.
Collapse
Affiliation(s)
| | | | - Michael Rauch
- Department of Chemistry
- Columbia University
- New York
- USA
| | | | - Gerard Parkin
- Department of Chemistry
- Columbia University
- New York
- USA
| |
Collapse
|