1
|
Latha AT, Swamy PCA. Unveiling the Reactivity of Part Per Million Levels of Cobalt-Salen Complexes in Hydrosilylation of Ketones. Chemistry 2024; 30:e202401841. [PMID: 38853149 DOI: 10.1002/chem.202401841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/11/2024]
Abstract
A series of air-stable cobalt(III)salen complexes Co-1 to Co-4 have been synthesized and employed in the hydrosilylation of ketones. Notably, the most intricately tailored Co-3 pre-catalyst exhibited exceptional catalytic activity under mild reaction conditions. The developed catalytic hydrosilylation protocol proceeded with an unusual ppm level (5 ppm) catalyst loading of Co-3 and achieved a maximum turnover number (TON) of 200,000. A wide variety of aromatic, aliphatic, and heterocyclic ketones encompassing both electron-donating and electron-withdrawing substituents were successfully transformed into the desired silyl ethers or secondary alcohols in moderate to excellent yields.
Collapse
Affiliation(s)
- Anjima T Latha
- Main Group Organometallics Optoelectronic Materials and Catalysis Laboratory, Department of Chemistry, National Institute of Technology, Calicut, 673601, India
| | - P Chinna Ayya Swamy
- Main Group Organometallics Optoelectronic Materials and Catalysis Laboratory, Department of Chemistry, National Institute of Technology, Calicut, 673601, India
| |
Collapse
|
2
|
Tannoux T, Mazaud L, Cheisson T, Casaretto N, Auffrant A. Fe II complexes supported by an iminophosphorane ligand: synthesis and reactivity. Dalton Trans 2023; 52:12010-12019. [PMID: 37581245 DOI: 10.1039/d3dt00950e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The synthesis of iron complexes supported by a mixed phosphine-lutidine-iminophosphorane (PPyNP) ligand was carried out. While bidentate κ2-N,N coordination was observed for FeCl2, pincer coordination modes were adopted at cationic iron centers, either through dechlorination of [LFe(PPyNP)Cl2] (1) or direct coordination of PPyNP to Fe(OTf)2. Reaction with tert-butylisocyanide gave access to the diamagnetic octahedral complex [Fe(PPyNP)(CNtBu)3]X2 (X = OTf (4), Cl (4')). Both 1 and 4 were shown to undergo deprotonation of the phosphinomethyl group, but the resulting complexes were not active for the dehydrogenative coupling of hexan-1-ol. The hydrosilylation of acetophenones was catalyzed at room temperature with 1 mol% of a catalyst generated in situ from cationic PPyNP-supported iron triflate complexes and KHBEt3.
Collapse
Affiliation(s)
- Thibault Tannoux
- Laboratoire de Chimie Moléculaire (LCM) CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, F-91120 Palaiseau Cedex, France.
| | - Louis Mazaud
- Laboratoire de Chimie Moléculaire (LCM) CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, F-91120 Palaiseau Cedex, France.
| | - Thibault Cheisson
- Laboratoire de Chimie Moléculaire (LCM) CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, F-91120 Palaiseau Cedex, France.
| | - Nicolas Casaretto
- Laboratoire de Chimie Moléculaire (LCM) CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, F-91120 Palaiseau Cedex, France.
| | - Audrey Auffrant
- Laboratoire de Chimie Moléculaire (LCM) CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, F-91120 Palaiseau Cedex, France.
| |
Collapse
|
3
|
Marciniec B, Pietraszuk C, Pawluć P, Maciejewski H. Inorganometallics (Transition Metal-Metalloid Complexes) and Catalysis. Chem Rev 2022; 122:3996-4090. [PMID: 34967210 PMCID: PMC8832401 DOI: 10.1021/acs.chemrev.1c00417] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 11/28/2022]
Abstract
While the formation and breaking of transition metal (TM)-carbon bonds plays a pivotal role in the catalysis of organic compounds, the reactivity of inorganometallic species, that is, those involving the transition metal (TM)-metalloid (E) bond, is of key importance in most conversions of metalloid derivatives catalyzed by TM complexes. This Review presents the background of inorganometallic catalysis and its development over the last 15 years. The results of mechanistic studies presented in the Review are related to the occurrence of TM-E and TM-H compounds as reactive intermediates in the catalytic transformations of selected metalloids (E = B, Si, Ge, Sn, As, Sb, or Te). The Review illustrates the significance of inorganometallics in catalysis of the following processes: addition of metalloid-hydrogen and metalloid-metalloid bonds to unsaturated compounds; activation and functionalization of C-H bonds and C-X bonds with hydrometalloids and bismetalloids; activation and functionalization of C-H bonds with vinylmetalloids, metalloid halides, and sulfonates; and dehydrocoupling of hydrometalloids. This first Review on inorganometallic catalysis sums up the developments in the catalytic methods for the synthesis of organometalloid compounds and their applications in advanced organic synthesis as a part of tandem reactions.
Collapse
Affiliation(s)
- Bogdan Marciniec
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Cezary Pietraszuk
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Piotr Pawluć
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Hieronim Maciejewski
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
4
|
Nihala R, Hisana KN, Afsina CMA, Anilkumar G. Applications of iron pincer complexes in hydrosilylation reactions. RSC Adv 2022; 12:24339-24361. [PMID: 36128525 PMCID: PMC9414319 DOI: 10.1039/d2ra04239h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Due to its abundance, low cost and low toxicity, the first-row transition metal, iron is widely preferred as a catalyst in organic synthesis. The only drawback of lower selectivity due to high reactivity and low stability of the metal centre is tuned by using pincer ligands of different types. The different iron pincer complexes thus prepared are extensively used in catalyzing different types of organic reactions with great selectivity and functional group tolerance under moderate reaction conditions. In this review, we focus on the applications of iron pincer complexes in hydrosilylation reactions, especially the hydrosilylation of carbonyl derivatives and alkene/alkynes. Iron pincer complexes are efficient in catalyzing various organic reactions with excellent selectivity and functional group tolerance at moderate reaction conditions. This review focuses on the applications of iron pincer complexes in hydrosilylation reactions.![]()
Collapse
Affiliation(s)
- Rasheed Nihala
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India, +91-481-2731036
| | - Kalathingal Nasreen Hisana
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - C. M. A. Afsina
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Gopinathan Anilkumar
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India, +91-481-2731036
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| |
Collapse
|
5
|
Gautam M, Tanaka S, Sekiguchi A, Nakajima Y. Long-Range Metal–Ligand Cooperation by Iron Hydride Complexes Bearing a Phenanthroline-Based Tetradentate PNNP Ligand. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Monika Gautam
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai,Tsukuba, Ibaraki 305-8577, Japan
| | - Shinji Tanaka
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Akira Sekiguchi
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yumiko Nakajima
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai,Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
6
|
Matsubara K, Mitsuyama T, Shin S, Hori M, Ishikawa R, Koga Y. Homoleptic Cobalt(II) Phenoxyimine Complexes for Hydrosilylation of Aldehydes and Ketones without Base Activation of Cobalt(II). Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kouki Matsubara
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Tomoaki Mitsuyama
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Sayaka Shin
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Momoko Hori
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Ryuta Ishikawa
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Yuji Koga
- Department of Chemistry, Fukuoka University, 8-19-1 Nanakuma, Fukuoka 814-0180, Japan
| |
Collapse
|
7
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
8
|
Tamang SR, Findlater M. Emergence and Applications of Base Metals (Fe, Co, and Ni) in Hydroboration and Hydrosilylation. Molecules 2019; 24:E3194. [PMID: 31484333 PMCID: PMC6749197 DOI: 10.3390/molecules24173194] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023] Open
Abstract
Base metal catalysis offers an alternative to reactions, which were once dominated by precious metals in hydrofunctionalization reactions. This review article details the development of some base metals (Fe, Co, and Ni) in the hydroboration and hydrosilylation reactions concomitant with a brief overview of recent advances in the field. Applications of both commercially available metal salts and well-defined metal complexes in catalysis and opportunities to further advance the field is discussed as well.
Collapse
Affiliation(s)
- Sem Raj Tamang
- Memorial Circle & Boston, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael Findlater
- Memorial Circle & Boston, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
9
|
Spiegelberg B, Dell'Acqua A, Xia T, Spannenberg A, Tin S, Hinze S, de Vries JG. Additive-Free Isomerization of Allylic Alcohols to Ketones with a Cobalt PNP Pincer Catalyst. Chemistry 2019; 25:7820-7825. [PMID: 30973658 DOI: 10.1002/chem.201901148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 11/06/2022]
Abstract
Catalytic isomerization of allylic alcohols in ethanol as a green solvent was achieved by using air and moisture stable cobalt (II) complexes in the absence of any additives. Under mild conditions, the cobalt PNP pincer complex substituted with phenyl groups on the phosphorus atoms appeared to be the most active. High rates were obtained at 120 °C, even though the addition of one equivalent of base increases the speed of the reaction drastically. Although some evidence was obtained supporting a dehydrogenation-hydrogenation mechanism, it was proven that this is not the major mechanism. Instead, the cobalt hydride complex formed by dehydrogenation of ethanol is capable of double-bond isomerization through alkene insertion-elimination.
Collapse
Affiliation(s)
- Brian Spiegelberg
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Andrea Dell'Acqua
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Tian Xia
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Sergey Tin
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Sandra Hinze
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Johannes G de Vries
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| |
Collapse
|
10
|
Raya-Barón Á, Oña-Burgos P, Fernández I. Iron-Catalyzed Homogeneous Hydrosilylation of Ketones and Aldehydes: Advances and Mechanistic Perspective. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00201] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Álvaro Raya-Barón
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, Almería E-04120, Spain
| | - Pascual Oña-Burgos
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, Almería E-04120, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, Almería E-04120, Spain
| |
Collapse
|
11
|
Tamang SR, Cozzolino AF, Findlater M. Iron catalysed selective reduction of esters to alcohols. Org Biomol Chem 2019; 17:1834-1838. [PMID: 30604820 DOI: 10.1039/c8ob02661k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The reaction of (dppBIAN)FeCl2 with 3 equivalents of n-BuLi affords a catalytically active anionic Fe complex; the nature of the anionic complex was probed using EPR and IR experiments and is proposed to involve a dearomatized, radical, ligand scaffold. This complex is an active catalyst for the hydrosilylation of esters to afford alcohols; loadings as low as 1 mol% were employed.
Collapse
Affiliation(s)
- Sem Raj Tamang
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | | | | |
Collapse
|
12
|
Gudun KA, Segizbayev M, Adamov A, Plessow PN, Lyssenko KA, Balanay MP, Khalimon AY. POCN Ni(ii) pincer complexes: synthesis, characterization and evaluation of catalytic hydrosilylation and hydroboration activities. Dalton Trans 2019; 48:1732-1746. [DOI: 10.1039/c8dt04854a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(POCN)Ni(ii) complexes were found to mediate a variety of carbonyl hydroboration reactions, including chemoselective hydroboration of benzaldehyde and hydroborative reduction of amides.
Collapse
Affiliation(s)
- Kristina A. Gudun
- Department of Chemistry
- School of Science and Technology
- Nazarbayev University
- Astana 010000
- Kazakhstan
| | - Medet Segizbayev
- Department of Chemistry
- School of Science and Technology
- Nazarbayev University
- Astana 010000
- Kazakhstan
| | - Assyl Adamov
- Department of Chemistry
- School of Science and Technology
- Nazarbayev University
- Astana 010000
- Kazakhstan
| | - Philipp N. Plessow
- Institute of Catalysis Research and Technology (IKFT)
- D-76344 Eggenstein-Leopoldshafen
- Germany
| | - Konstantin A. Lyssenko
- Department of Chemistry
- M. V. Lomonosov Moscow State University
- Moscow 119991
- Russia
- Plekhanov Russian University of Economics
| | - Mannix P. Balanay
- Department of Chemistry
- School of Science and Technology
- Nazarbayev University
- Astana 010000
- Kazakhstan
| | - Andrey Y. Khalimon
- Department of Chemistry
- School of Science and Technology
- Nazarbayev University
- Astana 010000
- Kazakhstan
| |
Collapse
|
13
|
Affiliation(s)
- Duo Wei
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | | |
Collapse
|
14
|
Junge K, Papa V, Beller M. Cobalt-Pincer Complexes in Catalysis. Chemistry 2018; 25:122-143. [PMID: 30182374 DOI: 10.1002/chem.201803016] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/14/2018] [Indexed: 01/22/2023]
Abstract
Non-noble metal catalysts based on pincer type compounds are of special interest for organometallic chemistry and organic synthesis. Next to iron and manganese, currently cobalt-pincer type complexes are successfully applied in various catalytic reactions. In this review the recent progress in (de)hydrogenation, transfer hydrogenation, hydroboration and hydrosilylation as well as dehydrogenative coupling reactions using cobalt-pincer complexes is summarised.
Collapse
Affiliation(s)
- Kathrin Junge
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18055, Rostock, Germany
| | - Veronica Papa
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18055, Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18055, Rostock, Germany
| |
Collapse
|
15
|
Wang Y, Ren S, Zhang W, Xue B, Qi X, Sun H, Li X, Fuhr O, Fenske D. Syntheses of hydrido selenophenolato iron(II) complexes and their catalytic application in hydrosilylation of aldehydes and ketones. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Li Y, Krause JA, Guan H. Cobalt POCOP Pincer Complexes via Ligand C–H Bond Activation with Co2(CO)8: Catalytic Activity for Hydrosilylation of Aldehydes in an Open vs a Closed System. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00273] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yingze Li
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Jeanette A. Krause
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
17
|
|
18
|
Cetin MM, Hodson RT, Hart CR, Cordes DB, Findlater M, Casadonte DJ, Cozzolino AF, Mayer MF. Characterization and photocatalytic behavior of 2,9-di(aryl)-1,10-phenanthroline copper(i) complexes. Dalton Trans 2018; 46:6553-6569. [PMID: 28463361 DOI: 10.1039/c7dt00400a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis, characterization, photophysical properties, theoretical calculations, and catalytic applications of 2,9-di(aryl)-1,10-phenanthroline copper(i) complexes are described. Specifically, this study made use of di(aryl)-1,10-phenanthroline ligands including 2,9-di(4-methoxyphenyl)-1,10-phenanthroline (1), 2,9-di(4-hydroxyphenyl)-1,10-phenanthroline (2), 2,9-di(4-methoxy-3-methylphenyl)-1,10-phenanthroline (3), and 2,9-di(4-hydroxy-3-methylphenyl)-1,10-phenanthroline (4). The 2 : 1 ligand-to-metal complexes, as PF6- salts, i.e., ([Cu·(1)2]PF6, [Cu·(2)2]PF6, [Cu·(3)2]PF6, and [Cu·(4)2]PF6) have been isolated and characterized. The structures of ligands 1 and 2 and complexes [Cu·(1)2]PF6 and [Cu·(3)2]PF6 have been determined by single-crystal X-ray analysis. The photoredox catalytic activity of these copper(i) complexes was investigated in an atom-transfer radical-addition (ATRA) reaction and the results showed fairly efficient activity, with a strong wavelength dependence. In order to better understand the observed catalytic activity, photophysical emission and absorption studies, and DFT calculations were also performed. It was determined that when the excitation wavelength was appropriate for exciting into the LUMO+1 or LUMO+2, catalysis would occur. On the contrary, excitations into the LUMO resulted in no observable catalysis. In light of these results, a mechanism for the ATRA photoredox catalytic cycle has been proposed.
Collapse
Affiliation(s)
- M Mustafa Cetin
- Department of Chemistry and Biochemistry, Texas Tech University, MS 41061, Lubbock, TX 79409, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Junge K, Wendt B, Cingolani A, Spannenberg A, Wei Z, Jiao H, Beller M. Cobalt Pincer Complexes for Catalytic Reduction of Carboxylic Acid Esters. Chemistry 2017; 24:1046-1052. [DOI: 10.1002/chem.201705201] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Kathrin Junge
- Leibniz-Institut für Katalyse e.V. an der; Universität Rostock; Albert-Einstein-Straße 29a Rostock 18059 Germany
| | - Bianca Wendt
- Leibniz-Institut für Katalyse e.V. an der; Universität Rostock; Albert-Einstein-Straße 29a Rostock 18059 Germany
| | - Andrea Cingolani
- Dipartiento di Chimica Industriale “Toso Montanari”; University of Bologna; viale Risorgimento 4 40136 Bologna Italy
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V. an der; Universität Rostock; Albert-Einstein-Straße 29a Rostock 18059 Germany
| | - Zhihong Wei
- Leibniz-Institut für Katalyse e.V. an der; Universität Rostock; Albert-Einstein-Straße 29a Rostock 18059 Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V. an der; Universität Rostock; Albert-Einstein-Straße 29a Rostock 18059 Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der; Universität Rostock; Albert-Einstein-Straße 29a Rostock 18059 Germany
| |
Collapse
|
20
|
Wenz J, Vasilenko V, Kochan A, Wadepohl H, Gade LH. Coordination Chemistry of the PdmBOX Pincer Ligand: Reactivity at the Metal and the Ligand. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201701195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jan Wenz
- Anorganisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Vladislav Vasilenko
- Anorganisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Alexander Kochan
- Anorganisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz H. Gade
- Anorganisch-Chemisches Institut; Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
21
|
Abstract
We report an operationally convenient room temperature hydroboration of aldehydes and ketones employing Fe(acac)3 as precatalyst. The hydroboration of aldehydes and ketones proceeded efficiently at room temperature to yield, after work up, 1° and 2° alcohols; chemoselective hydroboration of aldehydes over ketones is attained under these conditions. We propose a σ-bond metathesis mechanism in which an Fe-H intermediate is postulated to be a key reactive species.
Collapse
Affiliation(s)
- Sem Raj Tamang
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Michael Findlater
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| |
Collapse
|
22
|
Obligacion JV, Zhong H, Chirik PJ. Insights into Activation of Cobalt Pre-Catalysts for C( sp2)-H Functionalization. Isr J Chem 2017; 57:1032-1036. [PMID: 29456261 PMCID: PMC5813819 DOI: 10.1002/ijch.201700072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The activation of readily prepared, air-stable cobalt (II) bis(carboxylate) pre-catalysts for the functionalization of C(sp2)-H bonds has been systematically studied. With the pyridine bis(phosphine) chelate, iPrPNP, treatment of 1-(O2CtBu)2 with either B2Pin2 or HBPin generated cobalt boryl products. With the former, reduction to (iPrPNP)CoIBPin was observed while with the latter, oxidation to the cobalt(III) dihydride boryl, trans-(iPrPNP)Co(H)2BPin occurred. The catalytically inactive cobalt complex, Co[PinB(O2CtBu)2]2, accompanied formation of the cobalt-boryl products in both cases. These results demonstrate that the pre-catalyst activation from cobalt(II) bis(carboxylates), although effective and utilizes an air-stable precursor, is less efficient than activation of cobalt(I) alkyl or cobalt(III) dihydride boryl complexes, which are quantitatively converted to the catalytically relevant cobalt(I) boryl. Related cobalt(III) dihydride silyl and cobalt(I) silyl complexes were also synthesized from treatment of trans-(iPrPNP)Co(H)2BPin and (iPrPNP)CoPh with HSi(OEt)3, respectively. No catalytic silylation of arenes was observed with either complex likely due to the kinetic preference for reversible C-H reductive elimination rather than product- forming C-Si bond formation from cobalt(III). Syntheses of the cobalt(II) bis(carboxylate) and cobalt(I) alkyl of iPrPONOP, a pincer where the methylene spacers have been replaced by oxygen atoms, were unsuccessful due to deleterious P-O bond cleavage of the pincer. Despite their structural similarity, the rich catalytic chemistry of iPrPNP was not translated to iPrPONOP due to the inability to access stable cobalt precursors as a result of ligand decomposition via P-O bond cleavage.
Collapse
Affiliation(s)
| | - Hongyu Zhong
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
23
|
Anderson NH, Boncella JM, Tondreau AM. Reactivity of Silanes with (
t
Bu
PONOP)Ruthenium Dichloride: Facile Synthesis of Chloro-Silyl Ruthenium Compounds and Formic Acid Decomposition. Chemistry 2017; 23:13617-13622. [DOI: 10.1002/chem.201703722] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Nickolas H. Anderson
- Los Alamos National Laboratory; MPA Division; MS J514 Los Alamos New Mexico 87545 United States
| | - James M. Boncella
- Los Alamos National Laboratory; MPA Division; MS J514 Los Alamos New Mexico 87545 United States
| | - Aaron M. Tondreau
- Los Alamos National Laboratory; MPA Division; MS J514 Los Alamos New Mexico 87545 United States
| |
Collapse
|
24
|
Spentzos AZ, Barnes CL, Bernskoetter WH. Effective Pincer Cobalt Precatalysts for Lewis Acid Assisted CO2 Hydrogenation. Inorg Chem 2016; 55:8225-33. [DOI: 10.1021/acs.inorgchem.6b01454] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ariana Z. Spentzos
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Charles L. Barnes
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Wesley H. Bernskoetter
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
25
|
Shaffer DW, Bhowmick I, Rheingold AL, Tsay C, Livesay BN, Shores MP, Yang JY. Spin-state diversity in a series of Co(ii) PNP pincer bromide complexes. Dalton Trans 2016; 45:17910-17917. [DOI: 10.1039/c6dt03461f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the structural and electronic impacts of modifying the bridging atom in a family of Co(ii) pincer complexes with the formula Co(t-Bu)2PEPyEP(t-Bu)2Br2 (Py = pyridine, E = CH2, NH, and O for compounds 1–3, respectively).
Collapse
Affiliation(s)
| | | | | | - Charlene Tsay
- Department of Chemistry
- University of California
- Irvine
- USA
| | - Brooke N. Livesay
- Department of Chemistry
- Colorado State University
- Fort Collins
- USA
- Department of Chemistry
| | | | - Jenny Y. Yang
- Department of Chemistry
- University of California
- Irvine
- USA
| |
Collapse
|